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Vassiliev Knot Invariants
I. Introduction

S. V. CHMUTOYV, S. V. DUZHIN, AND S. K. LANDO

The present paper can be regarded both as an introduction to Vassiliev’s
theory of knot invariants and as an introduction to our subsequent papers
[CDL2, CDL3]. Our chief goal was to explain how the initial topological
problem is reduced to a purely combinatorial one. Another introduction, well
suited for first reading, can be found in [CD]. For more detailed expositions
we refer the reader to [BL, B-N, S, B].

The set Z* of all knot invariants with values in a ring K forms a mod-
ule over K. Since functions can be multiplied, this module carries a natural
structure of an algebra. Moreover, the connected sum of knots defines, by du-
ality, a comultiplication on .#”* and thus supplies %~ with a Hopf algebra
structure. Of course, this Hopf algebra is extremely complicated. Below, we
describe a series of objects which can be considered as successive simplifica-
tions of the complete algebra Z~ and whose study yields certain information
about .7 .

In a pioneering work [V], Victor Vassiliev introduced finite order knot
invariants arising from the topology of discriminants in functional spaces.
The submodule 7 of finite order invariants is a Hopf subalgebra in .7 ; it
has a natural filtration by order. Thus 7 is a filtered Hopf algebra. Vassiliev
conjectured that the “closure” of 2 coincides with the entire algebra .7
(i.e. Vassiliev invariants distinguish knots). The Hopf algebra 7~ is also
very complicated. '

A further simplification is achieved by considering the corresponding
graded module gr7” . This module inherits the Hopf algebra structure from
7" . Kontsevich’s theorem [K] gives a purely combinatorial description of
gr7" as the algebra .#"* of functions on the set of chord diagrams satisfy-
ing certain linear equations (one- and four-term relations). The fundamental
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problem in the theory of Vassiliev knot invariants is to find an explicit de-
scription of this Hopf algebra.

Finally, a simplification of chord diagrams is given by their intersection
graphs. These graphs encode a lot of information about chord diagrams.
Two further papers by the same authors [CDL2, CDL3] are devoted to a
thorough study of intersection graphs.

Since the terminology in this area is not stable yet, we have allowed our-
selves to use some notions in a way slightly differing from that adopted
in [A, BL, B-N, K, S].

§1. Knots and their invariants

1.1. Smooth knots. A knot is a smooth embedding Ss' — R® considered
up to a smooth isotopy.

1.1.1. Hopf algebra structures on the modules of knots invariants. A knot
invariant is a function on the set of all knots whose values lie in an associa-
tive commutative ring K with unity. Invariants can be added together and
multiplied by elements of K, thus the set of invariants Z* is a module over
K. The natural multiplication

B AW A A

is defined by the rule (f, - f,)(k) = f,(k)- f,(k) for any knot k.
Another operation called comultiplication is given by the formula

0: X - X"
Jf(kl ®k2) =f(k1#k2),

where # denotes the connected sum of knots.

These operations of multiplication and comultiplication transform A
into a Hopf algebra.

Hopf algebras first appeared in [H] as algebraic structures in the cohomol-
ogy rings of H-spaces. A standard reference on this subject is [MM]. We also
recommend [Sp, Chapter 5].

1.1.2. Example: the Conway polynomial. The most famous of all knot in-
variants is probably the Alexander polynomial [Al]. It takes values in the ring
of polynomials in one variable. This invariant is defined not only for knots
but also for links. The Conway polynomial [C] differs from the Alexander
polynomial by a normalization and a change of variable. We will denote the
value of this invariant on a knot (or link) k by Con(k) and regard it as a
polynomial in the variable x . It can be deﬁned by the simple recurrent rule

z- Con >< —con Con Xﬁ

and the initial value Con(trivial knot) = 1 .
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By these three figures we mean three knots (links) which are identical
outside a small ball and are as shown on the picture inside the ball. Arrows
mark the link orientation.

1.2. Singular knots. Singular knots are smooth mappings S 'LR? having
only transversal double points as singularities and, like ordinary knots, are
considered up to isotopy equivalence.

1.2.1. Vassiliev invariants. The Vassiliev’s crucial idea was to study pro-
longations of the invariants to singular knots. To prolong a knot invariant f
to the space of all singular knots, all one has to do is to successively apply
the rule .

(OC) =150 -43C) o

N = ~

One may check that for any knot invariant f, initially defined only on non-
singular knots, this prolongation procedure always gives a consistent result.

DEeFINITION. A function on singular knots that satisfies the defining con-
dition (1) will be called a Vassiliev knot invariant.

DEFINITION. A Vassiliev knot invariant is of order no greater than n if it
vanishes on any singular knot with more than n double points.

Let 7, C %" be the submodule which contains invariants of order no
greater than n and let 7 denote the module of all finite order Vassiliev
invariants. Then

2% ChCYC - CVC

is a filtration in 7.

Note that product of two invariants of orders n and m is an invariant of
order n+ m. It is not so difficult to see that the coproduct of a finite order
invariant belongs to 7 @ 7 ¢ " ® Z". So the submodule 7 c .Z* of
Vassiliev knot invariants forms a filtered Hopf subalgebra in 7" .

Using this filtration, we can study a simpler graded module

a7 =%0%/7,0%/7,6 07,7 ,6...

This module is also a Hopf algebra (it inherits the structure from 7).

In §2 we introduce a purely combinatorial graded module .#™* consist-
ing of functions on chord diagrams. Kontsevich’s theorem [K] says that
gr?7 = 4" when K is a field of characteristic zero. Over an arbitrary ring
of coefficients gr?” is isomorphic to a submodule of .#™. We think that
the equality gr?” = # is always true, but, to the best of our knowledge,
this is still an open problem.

1.2.2. Example: coefficients of the Conway polynomial as Vassiliev invari-
ants. Let c,(k) be the coefficient of x" in the Conway polynomial Con(k).
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Here we explain that ¢, is a knot invariant of order no greater than 7 (see
also [BL, B-N]).

According to sec. 1.2.1, we prolong the Conway polynomial to singular
knots by the rule

con((x/> : con(& oo X“
2+ Con >< ) = Con ><)

Now it is obvious that if the knot k contains more than n double points
then Con(k) has no term x' with i <n.

So

§2. Chord diagrams

2.1. Notions.

DEFINITION. A chord diagram of order n is a circle with a distinguished
set of n unordered pairs of points, regarded up to an orientation preserving
diffeomorphism of the circle.

A chord diagram may be depicted as a circle with a set of n chords all of
whose endpoints are distinct. Of course, these chords can be drawn as lines
or curves whose actual shape is irrelevant; what matters is the way they bind
their endpoints into pairs.

DEFINITION The chord diagram of a singular knot S' - R? isthe oriented
circle S' with the preimages of every double point connected by a chord.

2.2. From knot invariants to functions on chord diagrams. Consider a Vas-
siliev knot invariant v of order no greater than n, v € 7, . We shall show
that the value of v on a knot with »n double points depends only on the
chord diagram of the knots, but not on the knot itself.

Indeed, let k,, k, be two singular knots with n double points that have
identical chord diagrams. By an appropriate isotopy, the knot k, can be
transformed so that

a) the corresponding double points of k, coincide with those of &, ;

b) the corresponding arcs of k, coincide with those of k, in a small
neighborhood of each double point;

c) the arcs of k; and k, have no common points outside of these small
neighborhoods.

Now take two subsequent double points of k, and an arc of k, connect-
ing these points. This arc may be transformed into the corresponding arc
of k, by an isotopy which contains a sequence of “perestroikas”, each “per-
estrmka” being a passage through a knot with an additional double point.
Due to the defining condition (1) the value of v does not change under such
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“perestroikas”, whence the required assertion.

The values of the invariant do not thus depend on the specific behavior
of the knotted curve, being completely defined by the corresponding chord
diagram, i.e., by the order in which double points are encountered while
moves along the curve. Moreover, if the restrictions of two invariants of order
no greater than n on the set of all singular knots with precisely » double
points coincide, then their difference is an invariant of order no greater than
n—1. Hence, to an element v € 7, /7, | we can assign a function on the set
of chord diagrams with n chords. Functions on chord diagrams that appear
in this way always satisfy two types of conditions (see [V, BL, B-N, CD]):

(one-term relation)

(four-term relation)

()

for an arbitrary fixed position of (n —2) chords (which are not drawn here)
and the two additional chords positioned as shown in the picture. Here and
below, dotted arcs suggest that there might be further chords attached to their
points, while on the solid portions of the circle all the endpoints are explicitly
shown.

Denote the set of all functions v (with values in K) on the chord diagrams
satisfying equations (2) and (3) by /™.

REDEFINITION. Elements of ./ will be referred to as invariants.

We hope that the double meaning of the word “invariant” (used both for
functions on knots and for functions on chord diagrams) will not lead to
confusion.

THEOREM [K]. When K is a field of characteristic zero elements of 7,/7,_,
satisfy no other relations besides those derived from one-term relations (2) and
four-term relations (3). This means that the Hopf algebras /™ and gr?”
coincide in these cases.

2.3. Example: coefficients of the Conway polynomial as elements of .7"* . It
is easy to see from the definition in 1.1.2 that the constant term ¢, of the
Conway polynomial is equal to 1 for any knot and to zero for any link
with more than one component. The formulas of 1.2.2 explain the following
algorithm that computes the value of ¢, on a given chord diagram. Let D
be a chord diagram with n chords. Replace each chord of D by a pair of

'In [CD], the restriction of an invariant v of order no greater than » on the set of all
singular knots with exactly n double points was called the symbol of v .
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parallel chords (“double it”) and count the number of components of the
curve thus obtained. If the number of components is more than one, then
¢,(D) = 0. If there is only one component, then ¢,(D) = 1. In particular,

for D = @ — { h
\b

the number of components is three, so ¢,(D

A
NI

the number of components is only one, so ¢,(D) = 1.

for D =

2.4. The Hopf algebra of chord diagrams. Let .#, be the K-module of
chord diagrams of order » modulo all four-term relations

aVa

Consider the graded module_
M=_SMSMSD...
and the dual graded module
M =My MM S ...

where #, = @Hom(A#,, K) .

The module M 1nher1ts the Hopf algebra structure from the module .7~ ,
and the module .# carries the structure of the dual Hopf algebra. Exphcn
description of this structure is given by the following two definitions.

DEFINITION. Let D, D, be two chord diagrams of order n,, n, respec-
tively. The product [D,] - [D,] of classes [D,] € /[nl , [D,] € Afnz is a class
[D] € #, W defined as follows.

Break the circle of the diagram D, at a point x, different from all the
ends of the chords of D, and break the circle of the diagram D, at a point
x, different from all the ends of the chords of D, . Gluing the two broken
circles in a new circle, with their orientations taken into account, one obtains
a new chord diagram D of order n, +n,. We set [D,]-[D,] =[D].

DEFINITION. Let D be a chord diagram of order n. Any subset J of the
chords of D determines two diagrams D, and D,., where D, contains only
the chords belonging to the set J, and D, consists of the chords belonging
to the complement of J. We set

([D) = Z{D,] ®[D,],

where the sum is taken over all subsets J.
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The unity in the Hopf algebra .# is represented by the chord diagram with
an empty set of chords. The unity in the dual algebra .#" is the function
equal to 1 on the unit diagram and equal to zero on any other diagram.

Factorizing modules .#, over all 1-term relations

one obtains a K-module .7, . The Hopf algebra /" = S &M, & ...
is a quotient algebra of .# . The corresponding dual Hopf algebra ./ s
naturally realized as a subalgebra .#"* C #" consisting of functions that
satisfy the 1-term relations (2).

DEFINITION. .# will be referred as to the algebra of chord diagrams. El-
ements of .#" will be called pre-invariants.

2.5. Renormalization.

Although the algebra .#* (functions satisfying the one- and four-term
relations) is more closely related to 2 than the wider algebra .#™* (functions
satisfying only four-term relations), the latter is easier to handle in certain
circumstances.

In fact, there is no real difference between studying the one or the other,
because there exists a projection of .#* onto ./ which splits the natural
inclusion ,/* — #* . This projection kills the primitive element of .#” in
dimension 1 while preserving all the remaining primitive generators intact.
We shall give an explicit construction of this projection for .# * although
everything can be done for an arbitrary Hopf algebra.

Let X, :.#, — #, be the chord separating operator in dimension n de-
fined by the formula

n
X,:Dw—u-Yy D,
i=1

Here D is an n-chord diagram, D; is the (n — 1)-chord diagram obtained
from D by deleting its i-th chord; u is the (only) diagram with 1 chord.

We set
L X
Re, =11 (1- %)

i=1
and call the operator Rn: .# — .# the renormalization operator.
PROPOSITION.

1. The operator X is a differentiation of the algebra A .
2. The operator Rn is a homomorphism of Hopf algebras.
3. The operator Rn*: #* — #" is a projection onto V* C M~ .

Due to the last statement of the proposition, any pre-invariant f € .4~
can be easily converted into an invariant Rn"(f) € /™.
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For practical usage, the following formula for renormalization is more
convenient.

PROPOSITION [B-N]. The value of the renormalization operator on a chord
diagram D is given by the formula

Ra(D) = (- D,
J

where J runs over.all subsets of chords of the diagram D, the diagram D,
consists of all chords from J, and |J'| is the number of chords in the com-
plement of J .

§3. Intersection graph of a chord diagram

The notion of intersection graph of a chord diagram proves to be an effec-
tive tool both in obtaining estimates for the number of Vassiliev invariants
and in constructing families of invariants. It turns out that many of the
invariants previously constructed elsewhere depend only on the intersection
graph of a diagram and not on the diagram itself.

Below, we only give the basic definitions and mention the main results. In
two separate papers, [CDL2, CDL3], we present a detailed study of intersec-
tion graphs and of the related notions and constructions.

3.1. Definition and examples.

DEFINITION. The intersection graph T'(D) of a chord diagram D is a graph
whose vertices correspond to the chords of D and two vertices are connected
by an edge iff the corresponding chords intersect. (Two chords, a and b, are
said to intersect if their endpoints a, , a, and b, , b, appear in interchanging
order a,, b,, a,, b, along the circle.)

For example,

Note that not every graph can be obtained as the intersection graph of a
diagram. The simplest example appears in degree 6 and is given by the graph

Different diagrams may have one and the same intersection graph. For
example, consider the graph a,, :

n vertices

The number of diagrams with this intersection graph is 2"* for even n,

n—>5
and 2" *+2T forodd n. In particular, for n = 5 there are three diagrams
having a, as intersection graph:
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D @ B

3.2. Intersection Graph Conjecture.

3.2.1. Conjecture If D, and D, are two chord diagrams whose intersection
graphs are the same, T'(D,) = I'(D,), then v([D,]) = v([D,]) for any v €
N

This conjecture has been verified in the following situations:

e forany v € /Vn* up to n < 8 (we have checked this by a computer
calculation);

e for any invariant v coming from the defining representations of
Lie algebras gl(N) or so(N) according to D. Bar-Natan’s construc-
tion [B-NJ;

e when I'(D,) = I'(D,) is a tree (see [CDL2]) or, more generally,
D, , D, belong to the forest subalgebra (see [CDL3]).

REMARK. If the intersection graph conjecture is true, then Vassiliev knot
invariants do not distinguish knots with opposite orientation (see [B-N]).

3.2.2. Example. Coefficients of Conway polynomial as functions on the
intersection graphs. Here we prove that the value of ¢, on a chord diagram
depends only on the intersection graph of the diagram. We prove this by
induction over the number of chords n. For n = 1, 2 the fact is obvious.
For arbitrary n we have: c,(D) = c, ,(D'), where D' is obtained from D
by doubling any two intersecting chords. In particular,

i
for D = D':/ \ =
\'\_/
an
for D = D = =
J/

Now it is easy to see that I'(D’) depends only on I'(D).

3.3. What are the subsequent papers about. In [CDL2] we investigate chord
diagrams whose intersection graph is a forest. These diagrams generate a
Hopf subalgebra in .# called the forest algebra. We prove the Intersection
Graph Conjecture for pairs of diagrams belonging to the forest subalgebra.

In [CDL3] we study the forest subalgebra and a certain quotient algebra
of .# (Hopf algebra of weighted graphs). These two algebras turn out to
be isomorphic and their structure is rather simple: they have precisely one
primitive element in every dimension. The restriction of the homomorphism
from .# onto the algebra of weighted graphs on the forest subalgebra is
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an isomorphism. The dual mapping provides a set of invariants for chord
diagrams containing one primitive element in each grading of .# o
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