ADVANCES IN SOVIET MATHEMATICS
Volume 21, 1994

Vassiliev Knot Invariants
I1. Intersection Graph Conjecture for Trees

S. V. CHMUTOYV, S. V. DUZHIN, AND S. K. LANDO

The space of Vassiliev knot invariants has a natural filtration by order [V].
Kontsevich’s theorem [K] gives a purely combinatorial description of the
corresponding graded space as a space of functions v (“invariants”) on the
set of chord diagrams satisfying certain linear equations:

one-term relations
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All such “invariants” form a Hopf algebra.

The intersection graph of a chord diagram is a rougher combinatorical
object than the chord diagram itself, but it turns out that a lot of invariants
depend only on the intersection graph. Here we prove that the one-term and
four-term relations imply the coincidence of values of all invariants on two
chord diagrams with the same intersection graph under the assumption that
the intersection graph is a tree. A refined argument shows that this follows
from the four-term relations alone.

Throughout this paper we use notations and definitions of the previous
article [CDL1] which may be regarded as an introduction to the present text.

The Hopf algebra of invariants is dual to the Hopf algebra of chord dia-
grams (see 2.2 in [CDL1]), so the properties of either of them can be easily
translated into the properties of the other. Below we shall be concerned with
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the Hopf algebra of chord diagrams. In particular, an equality D, = D, will
mean equality of the two diagrams in the Hopf algebra .#" (see [CDL1]),
i. e. their equality modulo one- and four-term relations.

DEFINITION. The intersection graph I'(D) of a chord diagram D is a graph
whose vertices correspond to the chords of D and two vertices are connected
by an edge iff the corresponding chords intersect. (Two chords, a and b,
are said to intersect if their endpoints a,, a, and b,, b, appear along the
circle in interchanging order a, b, a, b.)

DEFINITION. A chord diagram D such that I'(D) is a tree will be called
a tree diagram.

§1. Main result
THEOREM. If I'(D,) = I'(D,) is a tree, then D, = D, .

To prove the Theorem we shall describe the set of all chord diagrams with
the same intersection tree graph. We shall introduce elementary transforma-
tions on chord diagrams with the property that any two diagrams with the
same intersection tree graph can be connected by a sequence of these trans-
formations. Then we shall prove that any two diagrams D, and D, differing
by an elementary transformation are equal in the algebra of diagrams ./".

§2. Key notions and statements

DEFINITION. A share of a chord diagram is a collection of its chords such
that there exist four points x,, x,, x5, x, on the circle different from the
endpoints of all chords and satisfying the two conditions:

e no chord connects two adjacent arcs Xx,Xx,, X,X;, X3X, OF X X,

e no chord connects two adjacent arcs x,Xx,, both ends of any chord
of the collection belong to the union of the two opposite arcs x, X,
and x,;Xx,.

ExaMPLE. The collection of four chords inside the dotted oval

is a share. But the collection of three fat chords is not a share because there
exists a fourth chord that separates their ends.

The collection formed by a single chord is always a share. The complement
to a share is a share.

Here and below, we mark shares by dotted ovals.

DEFINITION. Pick a chord ¢ in a tree diagram D, and call ¢ the trunk of
D . Consider the vertex v(¢) in I'(D) that corresponds to ¢. Then I'(D)\v ()
is a forest. Each component of I'(D) \ v(¢) is a tree. The collection of all
chords D that correspond to all vertices of one component of I'(D)\ v(#) is
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a share. This share will be called a bough of the tree diagram with respect to
the chosen trunk ¢.
EXAMPLE.

It is easy to see that each bough has the form of a “dumbbell” with two
shares 1 and 2.

DEFINITION. An elementary transformation of the tree diagram is a per-
mutation of boughs with respect to some trunk.

ProposiTION 1. If D, D, are tree diagrams with T'(D,) = I'(D,), then
D, can be obtained from D, by a sequence of elementary transformations.

ExaMPLE. For the diagrams

D, = and D,

I(D,) =T(Dy) = <

So D, can be obtained from D, by a sequence of elementary transformations
(the corresponding trunks are shown in thick lines):

Dl = e =¥ = D2
PROPOSITION 2. If D, and D, are two tree diagrams that differ by a per-

mutation of boughs, then D, = D, .

The main theorem (§1) is a consequence of Propositions 1 and 2.
In the proof of Proposition 2 we shall use the following statement and its
corollary.

STATEMENT (Generalized four-term relation). For any share the following
relation holds:

V- -
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COROLLARY.

Note that in the last figure there are no dotted arcs, i.e. each diagram consists
of the two marked shares and one more chord.

§3. Proof of the Main Theorem

To prove the main theorem, it is sufficient to prove Propositions 1 and 2.

3.1. Proof of Proposition 1. We can choose trunks ¢, € D, and ¢, € D,
that correspond to one and the same vertex v = v(¢,) = v(f,) in the tree
I' =T(D,) = I'(D,) . There is a one-to-one correspondence between the sets
of boughs of D, and D,. Rearranging the boughs of D, , we can dispose
them on the trunk in the order of the corresponding boughs in the diagram
D, . Now, each bough is a tree diagram with a naturally distinguished trunk
— the “handle” of the “dumbbell”. So we can make a permutation of the
new boughs with respect to a new trunk. Proceeding in this way, we obtain
a sequence of elementary transformations that convert D, into D, .

3.2. Proof of the generalized four-term relation. An ordinary four-term
relation is determined by the choice of a chord and the choice of a point on
the circle different from the endpoints of all chords. Given a share in a chord
diagram and a fixed point p outside of it, take all the chords of the share
one by one and write the usual four-term relations for these chords and the
point p. In the sum of all such equations, only four terms (those that give
the generalized four-term relation) will survive, because every diagram with
the variable endpoint of the additional chord inside the share occurs twice
with opposite signs and thus cancels.

3.3. Proof of the Corollary Of the six chords diagrams

Qe

four different generalized four-term relations can be composed. They can be
written as

x—-v+z=0,

y—w+z=0,

y—-v+u=0,

x—w+u=0,
where in each equation a one-term relation is taken into account. These
equations imply x =y.
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3.4. Proof of Proposition 2. The proof proceeds by induction with respect
to a specially chosen parameter that will be called complexity.

Let n be the permutation of boughs of a tree diagram D, transforming
it into D, .

DEFINITION. Numerate the boughs from top to bottom along the trunk:
by,...,b,. Let s be the minimum number such that = acts identically
onb,,,..., b, . The complexity c¢(D,, n) of the pair (D,, m) is the total
number of chords in the boughs b, ..., b

Induction base. If ¢(D,, n) = 2, then Ds1 =D,

Induction hypothesis. Suppose that for ¢(D,, n) < m the statement of
Proposition 2 holds.

Induction step. Let us prove the statement for ¢(D,,n) = m. Since
the permutation group is generated by transpositions of the first element
with other elements of the underlying finite set, it is sufficient to prove the

following fact:

upper boughs

lower boughé

where the total number of chords in the upper boughs is exactly m . Note
that if both shares of the dumbbell b, are empty, then this fact follows from
the Corollary and the induction hypothesis. In the general case we need the
following lemma.

LEMMA 1. Suppose that the statement of Proposition 2 holds for all pairs
(D,, m) with ¢(D,, n) <m. Then

upper boughé
%) l’h\ g
STt
=) — 2
o= " |
) X

oL -/

\4»/

lower boughs
for a tree diagram D such that the total number of chords in the upper boughs
is exactly m.

s

The number of chords in the upper boughs of the big diagram in the right
hand side is m — 2. By the induction hypothesis, the class of the diagram in
/" does not change under any permutation of its upper boughs. In particular,
the right hand side stays invariant when the two pairs of shares (1, 2) and
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(3, 4) are swapped. Proposition 2 thus follows from Lemma 1.
To prove Lemma 1, we need yet another lemma.

LEMMA 2. Suppose that the statement of Proposition 2 holds for all pairs
(D, , m) such that ¢(D,, ) <m. Then

upper bough

lower bough';

for any tree diagram D with the number of chords in the upper boughs less
than m.

3.5. Proof of Lemma 2. By the generalized four-term relation (see §2)

The difference of the first two diagrams on the right, by the generalized four-
term relation, is equal to

Since multiplication of diagrams in .#" is well defined, the second diagram
is equal to 5

Therefore, by the usual four-term relation their difference equals
. —

The generalized four-term relation applied to this difference yields
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Here the last diagram vanishes by the one-term relation, while the first dia-
gram is equal to

by the Corollary of the generalized four-term relation (see §2). This completes
the proof of Lemma 2.

3.6. Proof of Lemma 1. By Lemma 2
5

By the induction hypothesis and then by Lemma 2, the big diagram on the
right is equal to

This completes the proof of Lemma 1, Proposition 2 and the Theorem.
ReEMARK. Now that Proposition 2 is proved, another look at Lemmas 1
and 2 shows that their statements hold without any assumptions on the tree
diagram. Moreover, it is easy to see that a more careful argument gives the
analogs of the main theorem, Proposition 2 and so on in the algebra #
(see [CDL1]) of diagrams considered modulo only four-term relations. In
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this case in the right hand part of the equality of Lemma 2 the following
additional term appears:
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