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Vassiliev Knot Invariants
I11. Forest Algebra and Weighted Graphs

S. V. CHMUTOV, S. V. DUZHIN, AND S. K. LANDO

The main tool used in the investigation of Vassiliev knot invariants is the
Hopf algebra of chord diagrams [CDL1]. This algebra, simple as it seems at
first sight, upon closer examination proves to be a rather complicated object.
It is sufficient to say that, up to now, the number of its primitive generators
is known only in degrees no greater than 9.

A standard way to tackle a complex mathematical object O is through the
study of its subobjects and its quotient objects. An ideal situation is when
you can distinguish a simple subobject S C O such that the corresponding
quotient object O/S is also simple enough and so that the properties of the
whole object O are completely determined by the properties of S and O/S.

With the Hopf algebra of chord diagrams, we were not able to achieve this
goal. The best we could do was to find a simple (but nontrivial) subalgebra
& C # and a simple quotient algebra 7" defined by an epimorphism
M — W . These two algebras, &/ and 7, are, however, not complementary
to each other. Quite on the contrary, the composition map in the short non-
exact sequence

0O- - A - —0

proves to be an isomorphism between % and 7 .

An explicit description of 7 shows that both algebras have precisely one
primitive element in each dimension. This also means that they are both
isomorphic to the Hopf algebra of Young diagrams that appears in the repre-
sentation theory of symmetric groups (see [Gei, Zel]). The adjoint inclusion
¥ — #" provides a family of easily calculable Vassiliev knot invariants,
one primitive element in each dimension.

The paper consists of two sections. In §1, we state the main results, and
in §2, we give their proofs.
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Logically, the exposition proceeds as follows. We begin by introducing the
forest algebra &/ , which is, by definition, a subalgebra in .# generated by
all trees (see [CDL2]). We prove that &/ has not more than one primitive
element in each dimension and give an explicit representation for a primitive
element. Then we construct the Hopf algebra of weighted graphs and prove
the corresponding structure theorem. Finally, we discuss the relation between
the two algebras and prove that the primitive element of %/ constructed in
81 differs from zero.

§1. Main results

1.1. The forest algebra. Denote by &/ the subalgebra in the Hopf alge-
bra # of chord diagrams generated by the classes (modulo only four-term
relations) of all diagrams whose intersection graph is a forest.

THEOREM 1. The Hopf algebra &/ is isomorphic to the polynomial algebra
Z[x,, x,, ...], where the grading of every x, is n.

The four-term relations induce the following relations in &/ .

ProrosITION 1. Let F € &/ be an arbitrary forest. Consider three graphs
By F " and F(; with the same set of vertices and with the set of edges modified
with respect to the set of edges of F according to the choice of an edge e in
F and one of its endpoints A. Namely, F, differs from F only in that the
edge e is deleted, F' has all the edges incident with A in F shifted to the
other endpoint of e, and FO' is obtained from F' again by deleting e . Then
F=F+F foe F(; . Diagrammatically,

where the edge drawn vertically is e and its upper endpoint is A.

Proposition 1 follows from two statements proved in [CDL2]: Lemma 2
and the Remark in subsection 3.6.

The two last terms in (1) are nontrivial products. Therefore, the two
first terms are equivalent modulo the subspace spanned by the decomposable
elements. It is easy to see that any two trees with »n vertices are equivalent
with respect to this equivalence relation, hence the dimension of the primitive
space of grading » in %/ is at most 1. To finish the proof of the Theorem
1, it remains to specify a nonzero primitive element in each grading n.

PROPOSITION 2. Denote the tree

n vertices

by a,. Let J be a subset of edges of a,, and a, ; be the forest obtained
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from a, by deleting the edges from J . Then the element
J
p,=3(-"a, ,
7
(sum over all subsets, including the empty one) is a primitive element in %7, .

For example,

pz:I_I
mefeilel - jpd
. b { e [ i D
Edela el gl = = =21 +8 —,
ol el = SR
We postpone the proof of Proposition 2 until 2.1. In 3.3 we shall show

that p, # 0 because the corresponding element in the algebra of weighted
graphs 7" = &/ is nonzero.

COoROLLARY. Either of the two series a,,a,,..., and p,,p,,... is a
system of generators of the algebra &/ . They can be expressed in terms of
each other by the following Newton-type formulas

p,=a,— Z a,a; + Z a,a;a;, —

i+j=n i+j+k=n
4, =P+ Y PP+ D PPP -
i+j=n i+j+k=n

ProOF. The first formula is just another way to write the formula of Propo-
sition 2. The second one easily follows by induction.

REMARK. The main theorem of [CDL2] allows us to give a description of
the forest algebra &/ in terms of graphs. Its component %/, -is generated by
all forests with n vertices viewed modulo relations (1). The multiplication
in & is the disjoint union of forests. The comultiplication in %/ consists
in the following. Given a forest F, choose a subset J (possibly empty) of
vertices of F. Let F, be the subgraph of F containing the vertices from
J and all edges of F that connect these vertices. Then

S(F)=) F,®F,,
J

where J' is the complement of J in the set of all vertices of F. The unity
in & is the empty graph. We shall denote it by 1.
Identifying the primitive element p, € %/, with the Young diagram

N——r’

n cells
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we obtain an isomorphism of the forest algebra &/ with the Hopf algebra of
Young diagrams (see [Gei, Zel]).

1.2. Hopf algebra of weighted graphs. Assigning to every chord diagram
its intersection graph, D — I'(D), we obtain a mapping I' from the set of
all chord diagrams to the set of graphs.

We have seen that in the module generated by all chord diagrams modulo
the four term relations, there is a natural structure of a Hopf algebra, and
this structure is important in the study of Vassiliev invariants.

It is thus a natural idea to define a Hopf algebra structure in the module
spanned by all graphs in such a way that the mapping I" would become a
homomorphism of bialgebras.

Now, there are obvious operations on graphs that mimic the multiplication
and comultiplication of chord diagrams. The product of two graphs is just
their disjoint union, while the coproduct of a graph G is obtained as the sum
of all terms G' ® G, where G' and G" are two full subgraphs of G whose
vertex sets constitute a splitting of the vertex set of G. This makes the free
module generated by all graphs into a Hopf algebra & .

Of course, the bare mapping I" defines no algebra homomorphism because
it is not compatible with the four term relations. To obtain a correctly defined
homomorphism, we have to replace the target algebra £ by a quotient &/S,
where S contains S,, the ideal generated by the images of all four term
relations. The problem is to find an ideal S > S, which allows a lucid
description in terms of graphs and which is small enough so that the quotient
£ /S remains substantial.

One of the possible solutions is to consider the submodule in & generated
by all chromatic relations (these are, up to a change of sign, relations satisfied
by the chromatic polynomial, see below). It turns out, however, that in this
case the remaining quotient is too small (as a Hopf algebra, it is generated by
one primitive element). The reason of this phenomenon is that the chromatic
relation is not compatible with the standard grading in the graph algebra (by
the number of vertices). Quite remarkably, a close relation, considered in
a larger algebra — the one freely generated by weighted graphs — becomes
homogeneous, and the graded structure of the free algebra descends to the
quotient modulo these relations.

In what follows, we call this quotient algebra the algebra of weighted graphs
and denote it by %" . The algebra of weighted graphs is an example of a more
ample quotient algebra of .# , having 1 primitive generator in each degree.

Another and probably more important application of the algebra 7" is
that it yields a series of pre-invariants for chord diagrams (see [CDLI1])
through the notion of weighted chromatic invariants. This construction is
an analog of the classical theory of Tutte invariants (see [T]) adjusted for
graphs without multiple edges and loops, but having weighted vertices.

ExaMPLE. Let D be a chord diagram. Consider the mapping x: D —
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x(T'(D)), where I'(D) is the intersection graph of the chord diagram D, and
x(T'(D)) € Z[¢] its chromatic polynomial. The mapping x determines a pre-
invariant y: # — Z[t] with values in the ring of one-variable polynomials.

1.3. Weighted graphs and chromatic relations.

DEFINITION. A weighted graph is a graph G without loops and multiple
edges given together with a mapping w: V(G) — N called the weight func-
tion. The weight function assigns a positive integer to each vertex of the
graph. The weight w(G) of the graph G 1is the sum of weights of all its
vertices, W(G) =Y,y W(V)-

Usual graphs without loops and multiple edges can be treated as weighted
graphs with the weights of all vertices equal to 1.

We shall use two natural operations on weighted graphs with a distin-
guished edge: deletion and contraction.

If e is an edge of the graph G, then the new graph G; is obtained from
G by removing the edge e . The weights of the vertices do not change. This
is what we call deletton

The contraction G of the edge e is defined as follows:

1) the edge e is contracted into a vertex v of the new graph G

2) if multiple edges arise they are replaced by unique edges;

3) the weight w(v) of the vertex v is set equal to the sum of weights of
the two ends of the edge ¢ in G; the weights of the other vertices do not
change.

DEFINITON. The weighted chromatic relation is the relation

G-G,-G, =0,
where G is an arbitrary weighted graph and e its arbitrary edge.

We define 7, as the Z-module generated by all weighted graphs of weight
n modulo all weighted chromatic relations. Weset 7" = Z, o %o #,®... .

DEerFINITION. The Hopf algebra of weighted graphs is the module 7~ over
Z with the following operations of multiplication and comultiplication:

1) multiplication

WY&, 7,
comes from the disjoint union of graphs;

2) comultiplication

0: W, W W, 0¥, 0¥,_ & 0¥,3%,

is defined on generators as follows. Consider a weighted graph G;let J C
V(G) be a subset in the vertices of G and J "= V(G)\J its complement.

We set
d([G]) = [EG ®G, ]

The sum is taken over all subsets J, and G, is the full subgraph of G with
vertices in J ;
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3) the unity is represented by the empty graph;

4) the counity is the coefficient of the empty graph in the canonical expan-
sion of an element.

We omit the purely technical verification of fact that these operations are
well-defined.

THEOREM 2. The subgroup of primitive elements of #, is isomorphic to
Z and freely generated by the graph @ with one vertex of weight n. The
mapping

C:@rs,

can be prolonged to a mapping from the set of all weighted graphs to the ring
of polynomials in the variables s, , s, , ... . This prolongation descends to an
isomorphism between the Hopf algebras %" and Z[s,,s,, ...], where the
weight of each variable s, is set to n.

Note. Theorem 2 gives a description of all weighted chromatic invariants,
because the prolongation of C is just a universal weighted chromatical in-
variant. This means that an arbitrary weighted chromatic invariant can be
obtained from C by substituting certain appropriate values for the variables
s, . For example, the conventional chromatic polynomial x is obtained by
the substitution s, = (-1)" ~'t. Thus, the chromatic polynomial y can
be prolonged from the set of graphs without loops and multiple edges to a
weighted chromatical polynomial on the set of all weighted graphs. Let wy
be the prolongation. Then

wx(G) = (-)" "Iy,

where G is obtained from G by forgetting the weights of the vertices. Note
that not every classical Tutte polynomial [T] can be prolonged to a weighted
chromatical invariant on the set of weighted graphs. For example, the Tutte
dichromate has no such prolongation.

1.4. Constructing Vassiliev invariants from weighted chromatic invariants.
DEeFINITION. A function f defined on the set of weighted graphs of weight

n so that it satisfies the weighted chromatic relation
! /"

f(G) - f(G)-f(G)=0
will be called a weighted chromatic invariant of order n. In other words, a
weighted chromatic invariant of order »n is just an element of W”* .
Let D be a chord diagram. Its intersection graph I'(D) can be regarded
as a weighted graph with all weights set to 1. This yields a homomorphism
of free Z-modules.

THEOREM 3. The mapping T descends to a homomorphism of Hopf alge-
bras # — ¥ .

CoRrOLLARY. The dual mapping T : #™* — #" determines a Hopf subal-
gebra of chromatic pre-invariants in the algebra of pre-invariants.
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1.5. Relation between forests and weighted graphs.
THEOREM 4. The composition map
> MW,

where the first arrow is the natural inclusion and the second arrow is defined
by intersection graphs, is an isomorphism of Hopf algebras. The image of the
primitive element p, is the graph @ .

§2. Proofs of statements

2.1. Proof of Proposition 2. Let us label the vertices of a, consecutively:

1 2 3 n—1 n

This labeling induces a labeliné of each summand a, ; of the formula

p, = Z(—l)”lan J

J
We must prove that
o(p,)=p,®1+1@p,.

Z an',J’ ® an",J”'
n'+n''=n
Moreover, each graph a,, g and a,. s that appears in this formula has a
natural labeling of its VCI’IICCS 1nduced by the labeling of a, g
For example,

5(12) (il)®1+( 2)®(3) +(33)@02) +(13)® ()

+ 1®(I§) +(98(32) +(28(0s) + (- )o(]3)

Note that

So, d(p,) isasumof terms a,, , ®a,: ,» with coefficients +1, where the

vertices of graphs a,, ,» and a,. ;. are labeled by the indices {1, 2 n}.
Now let us fix a labeled monom1a1 in the tensor product, for example
ol
(. 3)®(‘ )

and look at all the summands a, , that contribute a term a,, , ® a,»
equal to this labeled monomial.

A pair (v', v") of vertices of the graphs a,, y and a,» ,n will be called
a boundary if v' and v" are labeled by consecutive integers. Let B be the
set of all boundary pairs. In our example B = {(1, 2); (3, 2)}. Let J" be
a subset of B (possibly empty). We shall build the graph a from the graphs

J/!
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a, . and a . ,» by adding certain edges that connect the vertices of the
n,J n',J
boundary pairs from J" .

It is obvious that any graph a, , such that theterm a,, ,®a,. ;. appears

in d(a, ;) may be constructed as graph a for some J".

In our example, J " is one of the four sets:

g;  {(1,2} {G,2)}  {(1,2);3,2)}

So the term

ol
(. 3) ® (' ?)
comes from the following graphs
ol | ol 1
2 I 2 2 2
3 3 I 3 3

Now suppose that the graph a, ; is constructed from the graphs a,

and a,. ,» with the help of some subset J C B. Then the sign of the
graph a, ; in the formula

J
b, = z(_l)l |an,J'
J

is equal to (— 1)1+|JI|+IJ“|—IJ”'|

with the coefficient

. So the term a,/ ;» ®a,u ;u occursin §(p,)

Z (_1)1+|J'|+|J”|—|J

ngB

III|

This coefficient vanishes because of the following fact: The number of subsets
(of a given set B) with an even number of elements is equal to the number of
its subsets with an odd number of elements.

This fact has only one exception, namely when B is empty. This exception
corresponds to the two terms p, ® 1 and 1®p, of d(p,) that do not cancel.
This completes the proof of Proposition 2.

2.2. Proof of Theorem 2. First of all we give a more invariant definition
for the mapping C extended to the set of all weighted graphs. Put

(@) =3 (-1"" [Lsugy-
? Vi

where the sum is taken over all spanning subgraphs y of the graph G and
the product is taken over all connected components y; of y. (A spanning
subgraph is a subgraph whose set of vertices coincides with that of the whole
graph; thus, the spanning subgraphs of a graph G are in one-to-one corre-
spondence with the subsets in the set of edges of G).
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Now we prolong C by linearity to the Z-module freely generated by all
weighted graphs. We claim that this mapping descends to the quotient alge-
bra 7" and defines an isomorphism between #  and Zs,,s,,...] (also
denoted by C in the sequel).

We must check four things about the mapping C: 1) that it satisfies the
weighted chromatic relation, 2) that it is multiplicative, 3) that it agrees with
the grading in 7" and in the polynomial ring, where the degree of every X,
is k, and 4) that it is one-to-one.

1) Let G be an arbitrary weighted graph and e an arbitrary edge of G.
We are going to prove that

C(G)=C(G,)+ C(G)).

There exists a natural one-to-one correspondence between subgraphs of G
and those subgraphs of the graph G that do not contain the edge e . Thus

we have
Z t(y.) = C(G,)

where the sum in the left hand side is taken over all spanmng subgraphs
y of the graph G that do not contain the edge e and #(y ) denotes the
corresponding product.

We are going to prove that the other part of the sum for C(G) is equal to
C(G ). Let y be a spanning subgraph of the graph G . Let b be an edge
of the graph y” that is covered twice by edges of the graph G in the process
of contraction. The pre-image of b under the contraction thus consists of
two edges that form a triangle together with the edge e . A spanning subgraph
y of G contracted to »” and contain the edge e may either contain any of
the two preimages of the edge b or both of them. So the spanning subgraph
y" of G/ corresponds to 3* spanning subgraphs of G containing e, where
k is the number of twice covered edges in " .

Mark an edge in each triangle in G that contains e. We have three possi-
bilities for the preimage of each twice covered edge. Two of these possibilities
correspond to one and the same first Betti number of the covering graph. The
third one gives a graph whose first Betti number differs from this value by
one. Thus, the products for two of the three possibilities mutually cancel,
and we obtain a one-to-one correspondence between spanning subgraphs of
G and spanning subgraphs of G that contain e and a marked edge in each
tnangle containing e. So we have

PCAES
Ve

where the sum is taken over all spanning subgraphs of G containing the edge
e.
2) The multiplicativity of C follows from a straightforward calculation.
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3) This is evident, if the grading of every s, is set to k.
4) Since the polynomial algebra is free, the assignment s, — @ defines a
homomorphism Z[s,, s,, §3,...]1 — %~ which is obviously inverse to C.

2.3. Proof of Theorem 3. We must prove that the mapping I" satisfies the
four-term relation. Write this relation in the form:

Denote the intersection graph of the first term in the left hand side by
G, . It contains two vertices 4 and B, corresponding to the two selected
chords These vertices are connected by an edge. The intersection graph of
the second term is obtained from G, by deleting the edge 4B, . We denote
this graph by G| .

In the algebra %  the following relation holds:

/ /"
G, -G, =G,

where G'l' is the result of contracting the edge 4B, in G
In the right hand side we similarly have:

1-

/ 1
G,- G,=G,,

where G2 is obtained by contracting the edge 4B, in G,.

To accomphsh the proof, it is sufficient to show that the two weighted
graphs G and G coincide. In fact, there exists a natural one-to-one cor-
respondence between the two sets of vertices V(G ') and V(G ') . This cor-
respondence preserves the weight function (the weight is equal to 1 for every
vertex but one, for which it equals two). The edges of the two graphs are
also in a one-to-one correspondence. Two chords different from 4, B, B,
intersect in G" if and only if they intersect in G" Suppose a chord C in
G, intersects B but does not intersect B, in G,; this means that C 1nter-
sects A in both dlagrams Thus, the vertex C in both graphs G and G
connected to the new vertex by an edge, and we obtain a natural one—to—one
correspondence between the edges of the graphs G| and G, as well.

2.4. Proof of Theorem 4. Split all graphs in the expansion of p, in pairs
in such a way that the two graphs in each pair differ only by one upper edge.
For example, the pairing for p, is:

weff Sl ol

A S

The difference of graphs in every pair is a graph with one vertex of weight 2.
In our example:
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©) (? ©)
= () = + .
I . .

We obtain a linear combination of graphs that looks like the corresponding
expansion for p, , with the only difference that here the upper vertex is
of weight 2. Repeating the process, we obtain the graph with one vertex of
weight 7. In our example

P92 -0
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