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We prove that if a finite order knot invariant does not distinguish mutant knots,
then the corresponding weight system depends on the intersection graph of a
chord diagram rather than on the diagram itself. Conversely, if we have a weight
system depending only on the intersection graphs of chord diagrams, then the
composition of such a weight system with the Kontsevich invariant determines
a knot invariant that does not distinguish mutant knots. Thus, an equivalence
between finite order invariants not distinguishing mutantsand weight systems
depending on intersections graphs only is established. We discuss relationship
between our results and certain Lie algebra weight systems.
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1 Introduction

Below, we use standard notions of the theory of finite order, or Vassiliev,invariants of
knots in 3-space; their definitions can be found, for example, in [6] or [14], and we
recall them briefly in Section2. All knots are assumed to be oriented.

Two knots are said to bemutant if they differ by a rotation of a tangle with four
endpoints about either a vertical axis, or a horizontal axis, or an axis perpendicular
to the paper. If necessary, the orientation inside the tangle may be replacedby the
opposite one. Here is a famous example of mutant knots, the Conway (11n34) knotC
of genus 3, and Kinoshita–Terasaka (11n42) knotKT of genus 2 (see [1]).

C = KT =

Note that the change of the orientation of a knot can be achieved by a mutationin the
complement to a trivial tangle.

Many known knot invariants cannot distinguish mutant knots. Neither the Alexander
polynomial, nor the (colored) Jones polynomial, nor the HOMFLY as well as the
Kauffman two variable polynomials distinguish mutants, see, for example, [17].
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On the other hand, a big class of knot invariants, known as Vassiliev, or finite order,
knot invariants has been thoroughly studied during the last decade. Finiteorder knot
invariants form a filtered commutative associative ring. All Vassiliev invariants up to
order 10 do not distinguish mutants as well, see [18]. However, there is a Vassiliev
invariant of order 11 distinguishingC and KT [17, 18]. It comes from the colored
HOMFLY polynomial.

Vassiliev knot invariants can be described in terms of weight systems, that is, functions
on chord diagrams, which are combinatorial objects consisting of chords with disjoint
ends in a circle, satisfying certain conditions. In the present paper, we give a description
of Vassiliev invariants not distinguishing mutants. Namely, we show (Theorem1)
that they are exactly those associated to weight systems whose values depend on the
intersection graph of a chord diagram rather than the diagram itself. Distinct chord
diagrams can have coinciding intersection graphs, and the vector space of weight
systems depending on intersections graphs is smaller than that of all weight systems.

The study of weight systems determined by intersection graphs was initiated in [5],
and a number of interesting such invariants has been discovered since then. Our
results imply that the weight systems associated to the Lie algebrasl(2) and the Lie
superalgebragl(1|1) also belong to this class. These weight systems are the ones
corresponding to the colored Jones and Alexander polynomials respectively.

In Sec.2, we recall necessary definitions and state the main results of the paper.
Section3 is devoted to the proof of Theorem 1. In Sec.4, we discuss relationship
between intersection graphs and the weight systems associated to the Lie algebra sl(2)
and the Lie superalgebragl(1|1).

The paper was written during the second author’s visit to the Mathematical Department
of the Ohio State University. He expresses his gratitude to this institution for warm
hospitality and excellent working conditions. We are grateful to S. Duzhin,C. Soulíe,
K. J. Supowit, and A. Vaintrob for useful discussions. We are indebtedto T. Ohtsuki for
numerous valuable suggestions on improvement of the exposition and for analternative
proof of Theorem3. The second author was partly supported by the grant ACI-NIM-
2004-243 (Noeuds et tresses), RFBR 05-01-01012-a, NWO-RFBR047.011.2004.026
(RFBR 05-02-89000-NWOa), GIMP ANR-05-BLAN-0029-01.

2 Definitions and statements of main results

Let us recall the notions of Vassiliev invariant and weight system. Aknot is a smooth
nondegenerate embedding ofS1 into 3-space, and aknot invariant is a function on
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the set of knotsK taking the same values on isotopic knots. If otherwise is not stated
explicitly, all knot invariants are assumed to take values inQ. Any knot invariant can
be extended to singular knots having only double points according to theVassiliev skein
relation

v( ) = v( ) − v( ).

A knot invariant is said to beof order at most nif its extension vanishes on each
singular knot withn+1 double points. Knot invariants of order at mostn, for somen,
arefinite order, orVassiliev, invariants. The value of a knot invariant of order at mostn
on a singular knot withn double points depends on thechord diagramof the knot, that
is, the source circleS1 with chords whose ends are the preimages of the double points,
rather than on the knot itself. Thus, any knot invariant of order at mostn determines a
function on chord diagrams withn chords.

Any functionw on chord diagrams obtained in this way satisfies the so-calledfour-term
relations,

(4T) w( ) − w( ) + w( ) − w( ) = 0 ,

were the dotted arcs of the four diagrams can carry an arbitrary set of chords, the same
for all the four pictures. In addition, any such function vanishes on all chord diagrams
having an isolated chord, that is, a chord intersecting no other chord (theone-term, or
(1T), relations). The Kontsevich theorem [12] states that these are the only restrictions:
any function satisfying the four-term and the one-term relations is obtainedfrom a finite
order invariant of knots by means of the above procedure. The proofof the theorem is
based on a construction known as theKontsevich integral.

The notion of finite order invariant can be extended to framed knots, that is, knots
endowed with aframing, which is a smooth nondegenerate embedding of a tubular
neighborhood of the zero section in the tangent bundle toS1 to 3-space. The ex-
tension [15] of Kontsevich’s theorem to framed knots states that the corresponding
functions on chord diagrams are exactly those that satisfy the (4T)-relations. Functions
on chord diagrams satisfying the four-term relations are calledweight systems. Again,
if it is not stated otherwise, weight systems are assumed to take values inQ. Weight
systems satisfying, in addition, (1T)-relations are said to beunframed. Weight sys-
tems form a graded commutative cocommutative Hopf algebra, and unframed weight
systems is a Hopf subalgebra in it.

TheKontsevich invariant KI, constructed on the base of the Kontsevich integral, is an
invariant taking any knot to the Hopf algebraA = A0⊕A1⊕A2⊕. . . of chord diagrams
over Q, which is dual to that of unframed weight systems. HereAn := An/(4T+1T)
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is the quotient space of the spaceAn spanned by all chord diagrams withn chords
modulo the subspace spanned by all quadruples of chord diagrams in the 4T-relations
and all chord diagrams having an isolated chord.

Any unframed weight system induces, in composition with the Kontsevich invariant, a
finite order invariant of knots. Such knot invariants are calledcanonical. It is universal,
in the sense that the canonical invariants span the whole space of Vassilievinvariants.

To a chord diagram, itsintersection graph(also calledcircle graph) is associated. The
vertices of the graph correspond to the chords of the diagram, and two vertices are
connected by an edge if and only if the corresponding chords intersect.Thus, any
function g on graphs determines, through the triangle

{chord diagrams} w //

intersection graph
((QQQQQQQQQQQQ

Q

{graphs}

g

;;wwwwwwwww

,

a functionw on chord diagrams.

Direct calculations for smalln show that the values of weight systems are uniquely
determined by the intersection graphs of the chord diagrams. This fact motivated the
intersection graph conjecturein [5] (see also [6]) which states that any weight system
depends on the intersection graph only. This conjecture happened to be false, because
of the existence of a finite order invariant that distinguishes two mutant knots mentioned
above and the following fact.

The canonical knot invariant induced by an unframed weight system whose values
depend only on the intersection graph of the chord diagrams cannot distinguish mutants.

Our goal is to prove the converse statement thus establishing an equivalence between
finite order knot invariants nondistinguishing mutants and unframed weight systems
depending on the intersection graphs of chord diagrams only.

Theorem 1. If a finite order knot invariant does not distinguish mutants, then the
corresponding unframed weight system depends only on the intersectiongraphs of
chord diagrams.

Together, the two statements can be combined as follows.

A canonical knot invariant does not distinguish mutants if and only if its weight system
depends on the intersection graphs of chord diagrams only.
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The same statement is true about finite order invariants of framed knots and arbitrary
weight systems.

Here is the diagram of relevant spaces and maps between them.

An
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��
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K
KI //
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A
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γ

��

proj // An
w //
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γ
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An/mutant
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K/mutant // A/mutant //
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The equivalence relation “mutant” on chord diagrams will be defined in Section 3.1.
The equalityAn/mutant= Span(circle graphs withn vertices) is the result of Theorem 2 there.
The spaceFn is the degreen part of the 4-bialgebraof graphsF introduced in [13],
see Sec.4.2, and the (1T)-relations inF are defined as spanned by graphs with isolated
vertices.

Recently, B. Mellor [16] extended the concept of intersection graph to string links. We
do not know whether our Theorem1 admits an appropriate generalization.

3 Proof

3.1 Representability of graphs as the intersection graphs of chord dia-
grams

Not every graph can be represented as the intersection graph of a chord diagram. For
example, the following graphs are not intersection graphs.
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A characterization of those graphs that can be realized as intersection graphs is given
by an elegant theorem of A. Bouchet [4].

On the other hand, different diagrams may have coinciding intersection graphs. For
example, next three diagrams have the same intersection graph :

A combinatorial analog of the tangle in mutant knots is ashare[5, 6]. Informally, a
shareof a chord diagram is a subset of chords whose endpoints are separated into at
most two parts by the endpoints of the complementary chords. More formally,

Definition 1 . A sharein a chord diagram is a union of two arcs of the outer circle and
chords ending on them possessing the following property: each chord one of whose
ends belongs to these arcs has both ends on these arcs.

Here are some examples:

A share Not a share Two shares

The complement of a share also is a share. The whole chord diagram is its own share
whose complement contains no chords.

Definition 2 . A mutation of a chord diagramis another chord diagram obtained by
a rotation of a share about one of the three axes. Two chord diagrams are said to be
mutantif they can be transformed into one another by a sequence of mutations.

For example, three mutations of the share in the first chord diagram above produce the
following mutations:

Obviously, mutations preserve the intersection graphs of chord diagrams.

Mutations of chord diagram were used in [19] for studying mutations of alternating
links.
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Theorem 2. Two chord diagrams have the same intersection graph if and only if they
are related by a sequence of mutations.

This theorem is contained implicitly in papers [3, 8, 11] where chord diagrams are writ-
ten asdouble occurrence words, the language better suitable for describing algorithms
than for topological explanation.

Proof of Theorem2.
The proof of this theorem uses Cunningham’s theory of graph decompositions [9].

A split of a (simple) graphΓ is a disjoint bipartition{V1, V2} of its set of verticesV(Γ)
such that each part contains at least 2 vertices, and there are subsetsW1 ⊆ V1, W2 ⊆ V2

such that all the edges ofΓ connectingV1 with V2 form the complete bipartite graph
K(W1, W2) with the partsW1 and W2. Thus for a split{V1, V2} the whole graphΓ
can be represented as a union of the induced subgraphsΓ(V1) andΓ(V2) linked by a
complete bipartite graph.

Another way to think about splits, which is sometimes more convenient and whichwe
shall use in the pictures below, looks like follows. Consider two graphsΓ1 and Γ2

each having a distinguished vertexv1 ∈ V(Γ1) and v2 ∈ V(Γ2), respectively, called
markers. Construct the new graphΓ = Γ1 ⊠(v1,v2) Γ2 whose set of vertices is

V(Γ) = {V(Γ1) − v1} ⊔ {V(Γ2) − v2}

and whose set of edges is

E(Γ) = {(v′1, v′′1) ∈ E(Γ1) : v′1 6= v1 6= v′′1} ⊔ {(v′2, v′′2) ∈ E(Γ2) : v′2 6= v2 6= v′′2} ⊔

{(v′1, v′2) : (v′1, v1) ∈ E(Γ1) and (v2, v′2) ∈ E(Γ2)} .

Representation ofΓ asΓ1 ⊠(v1,v2) Γ2 is called adecompositionof Γ, Γ1 andΓ2 are
called thecomponentsof the decomposition. The partition{V(Γ1) − v1, V(Γ2) − v2}

is a split of Γ. GraphsΓ1 and Γ2 might be decomposed further giving a finer
decomposition of the initial graphΓ. Pictorially, we represent a decomposition by
pictures of its components where the corresponding markers are connected by a dashed
edge.

A primegraph is a graph with at least three vertices admitting no splits. A decompo-
sition of a graph is said to becanonicalif the following conditions are satisfied:

(i) each component is either a prime graph, or a complete graphKn, or a starSn,
which is the tree with a vertex, thecenter, adjacent ton other vertices;
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(ii) no two components that are complete graphs are neighbors, that is, theirmarkers
are not connected by a dashed edge;

(iii) the markers of two components that are star graphs connected by a dashed edge
are either both centers or both not centers of their components.

W. H. Cunningham proved [9, Theorem 3] that each graph with at least six vertices
possesses a unique canonical decomposition.

Let us illustrate the notions introduced above by two examples of canonical decom-
position of the intersection graphs of chord diagrams. We number the chords and the
corresponding vertices in our graphs, so that the unnumbered verticesare the markers
of the components. The first example is our example from page6:
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The canonical decomposition

The second example represents the chord diagram of the double points in the plane
diagram of the Conway knotC from page1. The double points of the shaded tangle
are represented by the chords 1,2,9,10,11.
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Canonical decomposition

The key observation in the proof of Theorem2 is that components of the canonical
decomposition of any intersection graph admit a unique representation by chord di-
agrams. For a complete graph and star components, this is obvious. For a prime
component, this was proved by A. Bouchet [3, Statement 4.4] (see also [11, Section 6]
for an algorithm finding such a representation for a prime graph).

Now to describe all chord diagrams with a given intersection graph, we start with
a component of its canonical decomposition. There is only one way to realizethe
component by a chord diagram. We draw the chord corresponding to the marker as a
dashed chord and call it themarked chord. This chord indicates the places where we
must cut the circle removing the marked chord together with small arcs containing its
endpoints. As a result we obtain a chord diagram on two arcs. Repeating the same
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procedure with a neighbor component of the canonical decomposition, weget another
chord diagram on two arcs. We have to sew these two diagrams together by their arcs in
an alternating order. There are four possibilities to do this, and they differby mutations
of the share corresponding to the second (or, alternatively, the first) component. This
completes the proof of Theorem2. �

To illustrate the last stage of the proof consider our standard example and take the star
2-3-4 component first and then the triangle component. We get

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

4

2

3
CUT

and
��
��
��
��

5

��
��
��

��
��
�� CUT

�
�
�
�

Because of the symmetry, the four ways of sewing these diagrams produceonly two
distinct chord diagrams with a marked chord:

CUT
and

CUT
;

repeating the same procedure with the marked chord for the last 1-6 component of the
canonical decomposition, we get

��
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��

6

1 �
�
�
� CUT

��
��
��
��

Sewing this diagram into the previous two in all possible ways we get four mutant
chord diagrams from page6.

As an enjoyable exercise we leave to the reader to work out our second example with the
chord diagram of the diagram of the Conway knot and find the mutation producing the
chord diagram of the plane diagram of the Kinoshita–Terasaka knot using the canonical
decomposition.

3.2 Proof of Theorem1

Suppose we have a Vassiliev knot invariantv of order at mostn that does not distinguish
mutant knots. LetD1 and D2 be chord diagrams withn chords whose intersection
graphs coincide. We are going to prove that the values of the weight system of v on
D1 andD2 are equal.
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By Theorem2, it is enough to consider the case whenD1 and D2 differ by a single
mutation in a shareS. Let K1 be a singular knot withn double points whose chord
diagram isD1. Consider the collection of double points ofK1 corresponding to the
chords occurring in the shareS. By the definition of a share,K1 has two arcs containing
all these double points and no others. By sliding the double points along one of these
arcs and shrinking the other arc we may enclose these arcs into a ball whose interior
does not intersect the rest of the knot. In other words, we may isotope the knot K1 to
a singular knot so as to collect all the double points corresponding toS in a tangleTS.
Performing an appropriate rotation ofTS we obtain a singular knotK2 with the chord
diagramD2. Sincev does not distinguish mutants, its values onK1 andK2 are equal.
Theorem1 is proved. �

To illustrate the proof, letD1 be the chord diagram from our standard example. Pick a
singular knot representingD1, say

K1 = 61 2 3
4

5 D1 =
4

1
1

6

6

5

5

2 2

33

4

To perform a mutation in the share containing the chords 1,5,6, we must slide the
double point 1 close to the double points 5 and 6, and then shrink the corresponding
arcs:

2
3

4
5 6

1

Sliding the double point 1

1

3
42 5

6

Shrinking the arcs

3
2 4 5

6

1

Forming the tangleTS

TS

Now doing an appropriate rotation of the tangleTS we obtain a singular knotK2

representing the chord diagramD2.

4 Lie algebra weight systems
and intersection graphs

Kontsevich [12] generalized a construction of Bar-Natan [2] of weight systems defined
by a Lie algebra and its representation to a universal weight system, with values in the
universal enveloping algebra of the Lie algebra. The weight system associated to a Lie
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algebrag (with a specific invariant scalar product, which we do not mention in notation)
is a mappingWg : An/(4T) → U(g)g from the Hopf algebra of chord diagrams to the
subalgebra ofg-invariant elements (that is, the center) in the universal enveloping
algebraU(g) of g. Note that this weight system does not satisfy the one-term relation.
In [20], Vaintrob extended this construction to Lie superalgebras.

Any representationρ : g → gl(V) of a Lie algebrag can be extended to a representation
of the universal enveloping algebra ofg; we denote this representation by the same
letterρ. By taking the trace Tr, this representation determines a number-valued weight
system Tr◦ ρ ◦ Wg. Thus, all weight systems associated to representations of a Lie
algebra are encoded in the universal weight system. Weight systems associated to
representations are said to becoloredby the representations.

Our main goal in this section is to prove

Theorem 3. The universal weight systems associated to the Lie algebrasl(2) and
to the Lie superalgebragl(1|1) depend on the intersection graphs of chord diagrams
rather than on the diagrams themselves.

Thus, we have the commutative diagram

{chord diagrams}
Wsl(2) //

))TTTTTTTTTTTTTTTT
U(sl(2))sl(2)

{intersection graphs}

55llllllllllllll

,

and similarly forWgl(1|1). It follows immediately that the canonical knot invariants
corresponding to these two algebras do not distinguish mutants. Forsl(2), this fact is
already known, since this weight system is the one of the colored Jones polynomial;
nevertheless, we give a direct proof on the intersection graphs side.

Note that for more complicated Lie algebras the statement of Theorem3 is no longer
true. For example, the universalsl(3) weight system distinguishes between the Conway
and the Kinoshita–Terasaka knots.

In fact, for each of the two algebras we prove more subtle statements.

Theorem 4. The universal weight systemWsl(2) depends on the matroid of the
intersection graph of a chord diagram rather than on the intersection graph itself.

This theorem inevitably leads to numerous questions concerning relationshipbetween
weight systems and matroid theory, which specialists in this theory may find worth
being investigated.
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Weight systems have a graph counterpart, so-called 4-invariants of graphs [13]. These
are linear functions on the 4-bialgebraF of graphs, which is a graph counterpart of
chord diagrams. The knowledge that a weight system depends only on theintersection
graphs does not guarantee, however, that it arises from a 4-invariant. In particular, we
do not know, whether this is true for the universalsl(2) weight system. Either positive
(with an explicit description) or negative answer to this question would be extremely
interesting. Forgl(1|1), the answer is positive.

Theorem 5. The universal weight systemWgl(1|1) is induced by a4-invariant of
graphs.

Thus, forWgl(1|1), the commutative triangle acquires the form

An/(4T)
Wgl(1|1) //

γ
##GGGGGGGGG

U(gl(1|1))gl(1|1)

Fn

88rrrrrrrrrrr

,

For small orders, the fact thatWgl(1|1) depends on intersection graphs only was estab-
lished in an undergraduate thesis work of David Jordan at the Universityof Oregon.

In the first two subsections below, we recall the construction of universal weight
systems associated to Lie algebras and the notion of 4-invariant of graphs. The next
two subsections are devoted to separate treating of the Lie algebrasl(2) and the Lie
superalgebragl(1|1) universal weight systems. The last subsection contains Ohtsuki’s
proof of Theorem3.

4.1 Weight systems via Lie algebras

Our approach follows that of Kontsevich in [12]. In order to construct a weight system,
we need a complex Lie algebrag endowed with a nondegenerate invariant bilinear
form (·, ·). The invariance requirement means that (x, [y, z]) = ([x, y], z) for any three
elementsx, y, z ∈ g. Pick an orthonormal basisa1, . . . , ad , (ai , aj) = δij , d being the
dimension ofg. Any chord diagram can be made into an arc diagram by cutting the
circle at some point and further straightening it. For an arc diagram ofn arcs, write
on each arc an indexi between 1 andd, and then write on both ends of the arc the
letter ai . Reading all the letters left to right we obtain a word of length 2n in the
alphabeta1, . . . , ad , which is an element of the universal enveloping algebra of our
Lie algebra. The sum of all these words over all possible settings of the indexes is
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the element of the universal enveloping algebraU(g) assigned to the chord diagram.
This element is independent of the choice of the cutting point of the circle, aswell
as the orthonormal basis. It belongs to the centerU(g)g of the universal enveloping
algebra and satisfies the 4-term relation, whence can be extended to a weight system.
The latter is called theuniversal weight systemassociated to the Lie algebra and the
bilinear form, and is denoted byWg; it can be specialized to specific representations
of the Lie algebra as in the original Bar-Natan’s approach. Obviously, any universal
weight system is multiplicative: its value on a product of chord diagrams coincides
with the product of its values on the factors.

The simplest noncommutative Lie algebra with a nondegenerate invariant bilinear form
is sl(2). It is 3-dimensional, and the centerU(sl(2))sl(2) of its universal enveloping
algebra is the ringC[c] of polynomials in a single variablec, the Casimir element.
The corresponding universal weight system was studied in detail in [7]. It attracts a lot
of interest because of its equivalence to the colored Jones polynomials.

In [20], Kontsevich’s construction was generalized to Lie superalgebras, and this
construction was elaborated in [10] for the simplest non-commutative Lie superalgebra
gl(1|1). The centerU(gl(1|1))gl(1|1) of the universal enveloping algebra of this algebra
is the ring of polynomialsC[c, y] in two variables. The value of the corresponding
universal weight system on a chord diagram withn chords is a quasihomogeneous
polynomial inc andy, of degreen, where the weight ofc is set to be 1, and the weight
of y is set to be 2.

4.2 The4-bialgebra of graphs

By a graph, we mean a finite undirected graph without loops and multiple edges. Let
Gn denote the vector space freely spanned overC by all graphs withn vertices,G0 = C

being spanned by the empty graph. The direct sum

G = G0 ⊕ G1 ⊕ G2 ⊕ . . .

carries a natural structure of a commutative cocommutative graded Hopf algebra. The
multiplication in this Hopf algebra is induced by the disjoint union of graphs, andthe
comultiplication is induced by the operation taking a graphG into the sum

∑
GU⊗GŪ ,

whereU is an arbitrary subset of vertices ofG, Ū its complement, andGU denotes
the subgraph ofG induced byU .

The 4-term relation for graphsis defined in the following way. By definition, the
4-term elementin Gn determined by a graphG with n vertices and an ordered pair
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A, B of its vertices is the linear combination

G− G′
AB − G̃AB + G̃′

AB,

where

• G′
AB is the graph obtained by deleting the edgeAB in G;

• G̃AB is the graph obtained by switching the adjacency toA of all the vertices
adjacent toB in G;

• G̃′
AB is the graph obtained by deleting the edgeAB in G′

AB (or, equivalently, by
switching the adjacency toA of all the vertices adjacent toB in G′

AB).

All the four terms in a 4-term element have the same numbern of vertices. The
quotient ofGn modulo the span of all 4-term elements inGn (defined by all graphs and
all ordered pairs of adjacent vertices in each graph) is denoted byFn. The direct sum

F = F0 ⊕F1 ⊕F2 ⊕ . . .

is the quotient Hopf algebra of graphs, called the 4-bialgebra. The mapping taking
a chord diagram to its intersection graph extends to a graded Hopf algebrahomomor-
phism γ : A → F from the Hopf algebra of chord diagrams to the Hopf algebra of
graphs.

Being commutative and cocommutative, the 4-bialgebra is isomorphic to the polyno-
mial ring in its basic primitive elements, that is, it is the tensor productS(P1)⊗S(P2)⊗
. . . of the symmetric algebras of its homogeneous primitive spaces.

4.3 Thesl(2) weight system

Our treatment of the universal weight system associated with the Lie algebra sl(2)
is based on the recurrence formula for computing the value of this weight system on
chord diagrams due to Chmutov and Varchenko [7]. The recurrence states that if a
chord diagram contains a leaf, that is, a chord intersecting only one otherchord, then
the value ofWsl(2) on the diagram is (c− 1/2) times its value on the result of deleting
the leaf, and, in addition,

− − + = 2 − 2

meaning that the value ofWsl(2) on the chord diagram on the left-hand side coincides
with the linear combinations of its values on the chord diagrams indicated on the right.

Now, in order to prove Theorem3 for the universalsl(2) weight system, we must prove
that mutations of a chord diagram preserve the values of this weight system.Take a
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chord diagram and a share in it. Apply the above recurrence formula to a chord and two
its neighbors belonging to the chosen share. The recurrence relation does not affect the
complementary share, while all the instances of the modified first share are simpler than
the initial one (each of them contains either fewer chords or the same numberof chords
but with fewer intersections). Repeating this process, we can replace theoriginal share
by a linear combination of the simplest shares, chains, which are symmetric meaning
that they remain unchanged under rotations. Thesl(2) case of Theorem3 is proved.

�

Now let us turn to the proof of Theorem4. For elementary notions of matroid theory
we refer the reader to any standard reference, say to [21]. Recall that a matroid can be
associated to any graph. It is easy to check that the matroid associated to thedisjoint
union of two graphs coincides with that for the graph obtained by identifyinga vertex
in the first graph with a vertex in the second one. We call the result of gluinga vertex
in a graphG1 to a vertex in a graphG2 a 1-productof G1 and G2. The converse
operation is 1-deletion. Of course, the 1-product depends on the choice of the vertices
in each of the factors, but the corresponding matroid is independent of this choice.

Similarly, let G1, G2 be two graphs, and pick verticesu1, v1 in G1 andu2, v2 in G2.
Then the matroid associated to the graph obtained by identifyingu1 with u2 and v1

with v2 coincides with the one associated to the graph obtained by identifyingu1 with
v2 andu2 with v1. The operation taking the result of the first identification to that of
the second one is called theWhitney twiston graphs.

Both the 1-product and the Whitney twist have chord diagram analogs. For two chord
diagrams with a distinguished chord in each of them, we define their 1-product as a
chord diagram obtained by replacing the distinguished chords in the ordinary product
of chord diagrams chosen so as to make them neighbors by a single chord connecting
their other ends. The Whitney twist also is well defined because of the following
statement.

Lemma 1. Suppose the intersection graph of a chord diagram is the result of identifying
two pairs of vertices in two graphsG1 and G2. Then both graphsG1 and G2 are
intersection graphs, as well as the Whitney twist of the original graph.

The assertion concerning the graphsG1 and G2 is obvious. In order to prove that
the result of the Whitney twist also is an intersection graph, letc1, c2 denote the two
chords in a chord diagramC such that deleting these chords makesC into an ordinary
product of two chord diagramsC1, C2. By reflecting the diagramC2 and restoring the
chordsc1 andc2 we obtain a chord diagram whose intersection graph is the result of
the desired Whitney twist. The lemma is proved.



16 S. V. Chmutov and S. K. Lando

According to the Whitney theorem, two graphs have the same matroid iff they canbe
obtained from one another by a sequence of 1-products/deletions and Whitney twists.
Therefore, Theorem4 follows from

Lemma 2. (i) The value ofWsl(2) on the1-product of chord diagrams coincides with
the product of its values on the factors divided byc. (ii) The value ofWsl(2) remains
unchanged under the Whitney twist of the chord diagram.

Statement (i) is proved in [7]. The proof of statement (ii) is similar to that of Theorem3.
Consider the partC2 participating in the Whitney twist and apply to it the recurrence
relations. Note that the relations do not affect the complementary diagramC1. Simpli-
fying the partC2 we reduce it to a linear combination of the simplest possible diagrams,
chains, which are symmetric under reflection. Reflecting a chain preserves the chord
diagram, whence the value of thesl(2) weight system. Theorem4 is proved. �

4.4 Thegl(1|1) weight system

Define the (unframed)Conway graph invariantwith values in the ring of polynomi-
als C[y] in one variabley in the following way. We set it equal to (−y)n/2 on graphs
with n vertices if the adjacency matrix of the graph is nondegenerate, and 0 otherwise.
Recall that the adjacency matrixAG of a graphG with n vertices is ann× n-matrix
with entries inZ2 obtained as follows. We choose an arbitrary numbering of the
vertices of the graph, and the entryaij is 1 provided thei th and thej th vertices
are adjacent and 0 otherwise (diagonal elementsaii are 0). Note that for oddn, the
adjacency matrix cannot be nondegenerate, hence the values indeed are in the ring of
polynomials. The Conway graph invariant is multiplicative: its value on the disjoint
union of graphs is the product of its values on the factors.

Clearly, the Conway graph invariant is a 4-invariant. Moreover, it satisfies the 2-term
relation, which is more restrictive than the 4-term one: its values on the graphs G
andG̃AB coincide for any graphG and any pair of ordered verticesA, B in it. Indeed,
consider the graph as a symmetric bilinear form on theZ2-vector space whose basis
is the set of vertices of the graph, the adjacency matrix being the matrix of the bilinear
form in this basis. In these terms, the transformationG 7→ G̃AB preserves the vector
space and the bilinear form, but changes the basisA, B, C, · · · → A + B, B, C, . . . .
Thus, it preserves the nondegeneracy property of the adjacency matrix.

The subspaceF1 is spanned by the graphp1 with a single vertex (whence no edges),
which is a primitive element. SinceF is the polynomial ring in its primitive elements,
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each homogeneous spaceFn admits a decomposition into the direct sum of two
subspaces, one of which is the subspace of polynomials in primitive elements of degree
greater than 1, and the other one is the space of polynomials divisible byp1. We
define theframed Conway graph invariantas the only multiplicative 4-invariant with
values in the polynomial ringC[c, y] whose value onp1 is c, and on the projection
of any graph to the subspace ofp1-independent polynomials along the subspace of
p1-divisible polynomials coincides with the Conway graph invariant of the graph.

The values of the framed Conway graph invariant can be computed recursively. Take
a graphG and consider its projection to the subspace of graphs divisible byp1. On
this projection, the framed Conway graph invariant can be computed because of its
multiplicativity. Now add to the result the value of the (unframed) Conway graph
invariant on the graph. Now we can refine the statement of theorem5.

Theorem 6. Thegl(1|1) universal weight system is the pullback of the framed Conway
graph invariant to chord diagrams under the homomorphismγ .

Proof. The proof follows from two statements in [10]. Theorem 3.6 there states
that settingc = 0 in the value ofWgl(1|1) on a chord diagram we obtain the result
of deframing this weight system. Theorem 4.4 asserts that this value is exactlythe
Conway invariant of the chord diagram. The latter coincides with the Conwaygraph
invariant of the intersection graph of the chord diagrams defined above.Since the
deframing for chord diagrams is a pullback of the deframing for graphs, we are done.

�

4.5 Ohtsuki’s proof of Theorem3

In this section, we reproduce the proof of Theorem3 due to T. Ohtsuki (private
communication). The proof uses the algebrasA(↑ ↑), C(↑ ↑), andB(x, y). We shall
use the terminology and notation of [6] and refer the reader to this book for their precise
definitions and properties. HereA(↑ ↑) is the algebra of chord diagrams supported on
two vertical arrows↑ ↑ modulo the 4T-relation,C(↑ ↑) is the algebra ofclosed Jacobi
diagramson ↑ ↑ modulo the AS, IHX, and STU relations, andB(x, y) is the algebra of
open Jacobi diagramswith univalent vertices labeled byx andy modulo the AS, IHX,
and thelink relations. All the three algebras are isomorphic to one another (see [6]).

For each of these algebras and for a Lie (super)algebrag with an invariant scalar
product, one can define a universal weight systemWg which takes values in (U(g) ⊗
U(g))g in the case of the algebrasA(↑ ↑) andC(↑ ↑), and in (S(g) ⊗ S(g))g in the case
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of the algebraB(x, y). HereS(g) denotes the symmetric tensor algebra of the vector
spaceg. But according to the Poincaré–Birkhoff–Witt theorem, the vector spacesU(g)
and S(g) are isomorphic. Therefore, we may think that the universal weight system
Wg takes values in (U(g) ⊗ U(g))g for all the three algebras.

Theorem3 would follow from the symmetry of the image of a chord diagram on↑ ↑

as we insert it into a chord diagram on a circle and take the universal weight system
Wg with values inU(g)g.

The g = sl(2) case.Here (U(sl(2))⊗ U(sl(2))sl(2) is generated by the three elements

c⊗ 1, 1⊗ c, andWsl(2)
( )

, wherec is the Casimir element inU(sl(2)). Obviously,

after inserting them into a chord diagram on a circle they become symmetric.

The g = gl(1|1) case. The universal weight systemWgl(1|1) vanishes on any Jacobi
diagram containing either of the fragments

or .

The quotient space ofB(x, y) modulo Jacobi diagrams with these fragments is generated
by the diagrams

x x,y x,y x,y x

y y

and

x,y x,y x,y

where the notationx, y means that the corresponding univalent vertices are labeled
either byx or by y. These diagrams become symmetric after the insertion into a chord
diagram on the circle modulo the above mentioned diagrams. �
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