Mutant knots and intersection graphs
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We prove that if a finite order knot invariant does not distiisp mutant knots,
then the corresponding weight system depends on the ioteEnsegraph of a
chord diagram rather than on the diagram itself. Converfelye have a weight
system depending only on the intersection graphs of chadrdims, then the
composition of such a weight system with the Kontsevich riava determines
a knot invariant that does not distinguish mutant knots. sThan equivalence
between finite order invariants not distinguishing muteaamsl weight systems
depending on intersections graphs only is established. ¥ésk relationship
between our results and certain Lie algebra weight systems.
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1 Introduction

Below, we use standard notions of the theory of finite order, or Vassiteariants of
knots in 3-space; their definitions can be found, for examplegjirof] [14], and we
recall them briefly in Sectio. All knots are assumed to be oriented.

Two knots are said to benutantif they differ by a rotation of a tangle with four
endpoints about either a vertical axis, or a horizontal axis, or an axgepéicular
to the paper. If necessary, the orientation inside the tangle may be refipdbd
opposite one. Here is a famous example of mutant knots, the Conwa$4)LknotC
of genus 3, and Kinoshita—Terasaka§42) knotKT of genus 2 (se€l]).

@&y P

Note that the change of the orientation of a knot can be achieved by a mutatian
complement to a trivial tangle.

Many known knot invariants cannot distinguish mutant knots. Neither theaflger
polynomial, nor the (colored) Jones polynomial, nor the HOMFLY as well as th
Kauffman two variable polynomials distinguish mutants, see, for exanpig, [
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On the other hand, a big class of knot invariants, known as Vassiliewite trder,
knot invariants has been thoroughly studied during the last decade. &idéeknot
invariants form a filtered commutative associative ring. All Vassiliev invasiaip to
order 10 do not distinguish mutants as well, s&.[ However, there is a Vassiliev
invariant of order 11 distinguishin@ and KT [17, 18]. It comes from the colored
HOMFLY polynomial.

Vassiliev knot invariants can be described in terms of weight systems, thatésions
on chord diagrams, which are combinatorial objects consisting of chatdslisjoint
ends in acircle, satisfying certain conditions. Inthe present papeiyea description
of Vassiliev invariants not distinguishing mutants. Namely, we show (Thedjem
that they are exactly those associated to weight systems whose values depthe
intersection graph of a chord diagram rather than the diagram itself. DRistiocd
diagrams can have coinciding intersection graphs, and the vector spacsEght
systems depending on intersections graphs is smaller than that of all wgstgms.

The study of weight systems determined by intersection graphs was initiatéf in [
and a number of interesting such invariants has been discovered simce O
results imply that the weight systems associated to the Lie alggé{#@pand the Lie
superalgebrgl(1|1) also belong to this class. These weight systems are the ones
corresponding to the colored Jones and Alexander polynomials resgegcti

In Sec.2, we recall necessary definitions and state the main results of the paper.
Section3 is devoted to the proof of Theorem 1. In Sd¢.we discuss relationship
between intersection graphs and the weight systems associated to the hia sl

and the Lie superalgebgg(1|1).

The paper was written during the second author’s visit to the MathematipalDeent

of the Ohio State University. He expresses his gratitude to this institution fonwa
hospitality and excellent working conditions. We are grateful to S. Duzhiigoulg,

K. J. Supowit, and A. Vaintrob for useful discussions. We are indebt&dOhtsuki for
numerous valuable suggestions on improvement of the exposition anddiie arative
proof of TheorenB. The second author was partly supported by the grant ACI-NIM-
2004-243 (Noeuds et tresses), RFBR 05-01-01012-a, NWO-R#BR011.2004.026
(RFBR 05-02-89000-NWOa), GIMP ANR-05-BLAN-0029-01.

2 Definitions and statements of main results

Let us recall the notions of Vassiliev invariant and weight systenknétis a smooth
nondegenerate embedding §f into 3-space, and knot invariantis a function on
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the set of knotgC taking the same values on isotopic knots. If otherwise is not stated
explicitly, all knot invariants are assumed to take value®inAny knot invariant can
be extended to singular knots having only double points according Wassiliev skein

relation " >< v X ' X \

A knot invariant is said to bef order at most nif its extension vanishes on each
singular knot withn+ 1 double points. Knot invariants of order at mostor somen,
arefinite order, or Vassilieyinvariants The value of a knot invariant of order at most

on a singular knot withn double points depends on thieord diagramof the knot, that

is, the source circl&' with chords whose ends are the preimages of the double points,
rather than on the knot itself. Thus, any knot invariant of order at makgtermines a
function on chord diagrams with chords.

Any functionw on chord diagrams obtained in this way satisfies the so-cllieeterm
relations

(47 W )~ wO\PY P -t =0,

were the dotted arcs of the four diagrams can carry an arbitrary seoads; the same
for all the four pictures. In addition, any such function vanishes onhalta diagrams
having an isolated chord, that is, a chord intersecting no other chordrfdéerm or
(1T), relationg. The Kontsevich theorenip] states that these are the only restrictions:
any function satisfying the four-term and the one-term relations is obté&ioexa finite
order invariant of knots by means of the above procedure. The pfdbé theorem is
based on a construction known as Kentsevich integral

The notion of finite order invariant can be extended to framed knots, thah@s
endowed with draming which is a smooth nondegenerate embedding of a tubular
neighborhood of the zero section in the tangent bundI&'tdo 3-space. The ex-
tension [L5] of Kontsevich’s theorem to framed knots states that the corresponding
functions on chord diagrams are exactly those that satisfy the (4T)-redaftamnctions

on chord diagrams satisfying the four-term relations are caligight systemsAgain,

if it is not stated otherwise, weight systems are assumed to take val@@s\iveight
systems satisfying, in addition, (1T)-relations are said tabgamed Weight sys-
tems form a graded commutative cocommutative Hopf algebra, and unfrasigdtw
systems is a Hopf subalgebra in it.

TheKontsevich invariant K] constructed on the base of the Kontsevich integral, is an
invariant taking any knotto the Hopf algehra= Ao®.A16.A26. . . of chord diagrams
over Q, which is dual to that of unframed weight systems. Hdre:= A,/(4T+1T)
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is the quotient space of the spadg spanned by all chord diagrams withchords
modulo the subspace spanned by all quadruples of chord diagrams if-thatdons
and all chord diagrams having an isolated chord.

Any unframed weight system induces, in composition with the Kontsevichianiaa
finite order invariant of knots. Such knot invariants are catl@donical Itis universal,
in the sense that the canonical invariants span the whole space of Vaissidigants.

To a chord diagram, itimtersection grapt{also callectircle graph is associated. The
vertices of the graph correspond to the chords of the diagram, and toegeare
connected by an edge if and only if the corresponding chords inter3éuts, any
function g on graphs determines, through the triangle

{chord diagramss W Q,
intersection M /
{graphg

a functionw on chord diagrams.

Direct calculations for smalh show that the values of weight systems are uniquely
determined by the intersection graphs of the chord diagrams. This factateatithe
intersection graph conjectuiia [5] (see also]) which states that any weight system
depends on the intersection graph only. This conjecture happeneddtséghfecause
of the existence of a finite order invariant that distinguishes two mutant knaisaned
above and the following fact.

The canonical knot invariant induced by an unframed weight systeoseviialues
depend only on the intersection graph of the chord diagrams cannotglissimmutants.

Our goal is to prove the converse statement thus establishing an eqoe/alerveen
finite order knot invariants nondistinguishing mutants and unframed weygt¢ras
depending on the intersection graphs of chord diagrams only.

Theorem 1. If a finite order knot invariant does not distinguish mutants, then the
corresponding unframed weight system depends only on the intersgetphs of
chord diagrams.

Together, the two statements can be combined as follows.

A canonical knot invariant does not distinguish mutants if and only if its teigstem
depends on the intersection graphs of chord diagrams only.
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The same statement is true about finite order invariants of framed knotslatrerg

weight systems.

Here is the diagram of relevant spaces and maps between them.

Kl proj
A

Ap/mutant

K /mutant— A /mutant Ap/mutant Spar( c‘ircle graF)hs )
\ \ with nvertices
F/an) -2 7y
The equivalence relation “mutant” on chord diagrams will be defined in Se8tib
The equalityA,/mutant= Spangircle graphs witm verticed iS the result of Theorem 2 there.
The spaceF, is the degree part of the 4bialgebraof graphsF introduced in 13],

see Sedd.2 and the (1T)-relations itF are defined as spanned by graphs with isolated
vertices.

Recently, B. Mellor 1L6] extended the concept of intersection graph to string links. We
do not know whether our Theoretradmits an appropriate generalization.

3 Proof

3.1 Representability of graphs as the intersection graphsfahord dia-
grams

Not every graph can be represented as the intersection graph ofchdiagram. For
example, the following graphs are not intersection graphs.
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A characterization of those graphs that can be realized as intersedioimsgs given
by an elegant theorem of A. Bouchdi [

On the other hand, different diagrams may have coinciding intersectigmgra-or
example, next three diagrams have the same intersection gra@b—e—e—o :

& C

A combinatorial analog of the tangle in mutant knots ishare[5, 6]. Informally, a
shareof a chord diagram is a subset of chords whose endpoints are spari® at
most two parts by the endpoints of the complementary chords. More formally,

Definition 1. A sharein a chord diagram is a union of two arcs of the outer circle and
chords ending on them possessing the following property: each cimerdfovhose
ends belongs to these arcs has both ends on these arcs.

Here are some examples:

A share Not a share Two shares

The complement of a share also is a share. The whole chord diagram isiitshawe
whose complement contains no chords.

Definition 2. A mutation of a chord diagrans another chord diagram obtained by
a rotation of a share about one of the three axes. Two chord diagrenssidrto be
mutantif they can be transformed into one another by a sequence of mutations.

For example, three mutations of the share in the first chord diagram albmece the
following mutations:

Obviously, mutations preserve the intersection graphs of chord diagrams.

Mutations of chord diagram were used ] for studying mutations of alternating
links.
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Theorem 2. Two chord diagrams have the same intersection graph if and only if they
are related by a sequence of mutations.

This theorem is contained implicitly in papeBs 8, 11] where chord diagrams are writ-
ten asdouble occurrence wordghe language better suitable for describing algorithms
than for topological explanation.

Proof of Theorem 2.
The proof of this theorem uses Cunningham’s theory of graph decationsg9].

A splitof a (simple) grapii’ is a disjoint bipartition{ V1, V,} of its set of verticed/(I")
such that each part contains at least 2 vertices, and there are st#psetd;, Wo C V,
such that all the edges &f connectingV; with V, form the complete bipartite graph
K(Wi, W) with the partsW; andW,. Thus for a split{V, V>} the whole grapi’
can be represented as a union of the induced subgia®h3 andT'(V,) linked by a
complete bipartite graph.

Another way to think about splits, which is sometimes more convenient and wigich
shall use in the pictures below, looks like follows. Consider two gradphsnd I,
each having a distinguished vertex € V(I'1) andv, € V(I'2), respectively, called
markers Construct the new graph = I'; M, v,) I'> whose set of vertices is

V(I) = {V(I') —vi} U{V(I'2) — v2}
and whose set of edges is
ET) = {(vi,v)) e E(T'1) 1 vy #vi # Vi) U {(V5,V5) € E(T2) 1 V5 # Vo # V3 } U
{(Vj,Vy) : (v;,va) € E(T1) and 2, v5) € E(T2)} .

Representation of asI'1 X, v,) I'2 is called adecompositiorof I', I'y andI'> are
called thecomponentsf the decomposition. The partitiofV/(I'1) — v, V(I'2) — v2}

is a split of I'. GraphsI'y and I', might be decomposed further giving a finer
decomposition of the initial graph'. Pictorially, we represent a decomposition by
pictures of its components where the corresponding markers are tediya dashed
edge.

A primegraph is a graph with at least three vertices admitting no splits. A decompo-
sition of a graph is said to bmanonicalif the following conditions are satisfied:

() each component is either a prime graph, or a complete gkaplor a starS,,
which is the tree with a vertex, treenter adjacent tan other vertices;
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(i) notwo components that are complete graphs are neighbors, that isntmiiers
are not connected by a dashed edge;

(i) the markers of two components that are star graphs connected bheddedge
are either both centers or both not centers of their components.

W. H. Cunningham proved®[ Theorem 3] that each graph with at least six vertices
possesses a unique canonical decomposition.

Let us illustrate the notions introduced above by two examples of canorécaht
position of the intersection graphs of chord diagrams. We number theshortthe
corresponding vertices in our graphs, so that the unnumbered veate#dse markers

of the components. The first example is our example from gage
615

) 5 6 5 4
i /\ ANl
4
3 3
& K AL
5 6 1 3

A chord diagram The intersection graph The canonical decomposition

The second example represents the chord diagram of the double poinésplatie
diagram of the Conway knd® from pagel. The double points of the shaded tangle
are represented by the chords 1,2,9,10,11.

e 10 2 4
- /\-
> /\ 8 6 3
8 6 11 1 2
Chord diagram Intersection graph Canonical decomposition

The key observation in the proof of Theoréhis that components of the canonical
decomposition of any intersection graph admit a unique representationobg dh
agrams. For a complete graph and star components, this is obvious. Honea pr
component, this was proved by A. Bouch@&t $tatement 4.4] (see alsbl], Section 6]
for an algorithm finding such a representation for a prime graph).

Now to describe all chord diagrams with a given intersection graph, we \githr

a component of its canonical decomposition. There is only one way to rahkze
component by a chord diagram. We draw the chord corresponding to ttkemas a
dashed chord and call it thmarked chord This chord indicates the places where we
must cut the circle removing the marked chord together with small arcs corgdigin
endpoints. As a result we obtain a chord diagram on two arcs. Repeatirsgitine
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procedure with a neighbor component of the canonical decompositiogetwanother
chord diagram on two arcs. We have to sew these two diagrams togetheirlay¢hén
an alternating order. There are four possibilities to do this, and they differutations
of the share corresponding to the second (or, alternatively, the finstpanent. This
completes the proof of Theorein O

To illustrate the last stage of the proof consider our standard examplelanithéastar
2-3-4 component first and then the triangle component. We get

4
TN A
— -
=6 % A
3

Because of the symmetry, the four ways of sewing these diagrams prodlycevo
distinct chord diagrams with a marked chord:

DB ~ B

repeating the same procedure with the marked chord for the last 1-6 centpdrihe
canonical decomposition, we get

6 1IN
1 cuT

Sewing this diagram into the previous two in all possible ways we get four mutan
chord diagrams from padge

As an enjoyable exercise we leave to the reader to work out our sexamgh& with the
chord diagram of the diagram of the Conway knot and find the mutatiorupitogl the
chord diagram of the plane diagram of the Kinoshita—Terasaka knaj thercanonical
decomposition.

3.2 Proof of Theoreml

Suppose we have a Vassiliev knot invariguaf order at mosh that does not distinguish
mutant knots. LeD; and D, be chord diagrams witim chords whose intersection
graphs coincide. We are going to prove that the values of the weightsydte on
D; andD- are equal.
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By Theoremz, it is enough to consider the case when and D, differ by a single
mutation in a shar&. Let K1 be a singular knot witm double points whose chord
diagram isD1. Consider the collection of double points if corresponding to the
chords occurring in the shaf By the definition of a shardl; has two arcs containing
all these double points and no others. By sliding the double points alongf dinese
arcs and shrinking the other arc we may enclose these arcs into a baé wlesor
does not intersect the rest of the knot. In other words, we may isotopetiidk to
a singular knot so as to collect all the double points correspondifgria tangleTs.
Performing an appropriate rotation ©§ we obtain a singular kndf, with the chord
diagramD,. Sincev does not distinguish mutants, its valueskbnandK, are equal.
Theoreml is proved. O

To illustrate the proof, leD; be the chord diagram from our standard example. Pick a
singular knot representing;, say

1
1 615

N

2
D;=s 3

4 4

5 6

To perform a mutation in the share containing the chords 1,5,6, we must slide the
double point 1 close to the double points 5 and 6, and then shrink the ponaiag
arcs:

Sliding the double point 1 Shrinking the arcs Forming the tanglél's

Now doing an appropriate rotation of the tandle we obtain a singular knoKj;
representing the chord diagraby.

4 Lie algebra weight systems
and intersection graphs

Kontsevich [L2] generalized a construction of Bar-Nat&h ¢f weight systems defined
by a Lie algebra and its representation to a universal weight system, witks\ia the
universal enveloping algebra of the Lie algebra. The weight systeotided to a Lie
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algebrag (with a specific invariant scalar product, which we do not mention in notation)
is a mappindW, : An/(4T) — U(g)? from the Hopf algebra of chord diagrams to the
subalgebra ofg-invariant elements (that is, the center) in the universal enveloping
algebraU(g) of g. Note that this weight system does not satisfy the one-term relation.
In [2Q], Vaintrob extended this construction to Lie superalgebras.

Any representatiop : g — gl(V) of aLie algebrgy can be extended to a representation
of the universal enveloping algebra @f we denote this representation by the same
letter p. By taking the trace Tr, this representation determines a number-valuektweig
system Tro p o W,. Thus, all weight systems associated to representations of a Lie
algebra are encoded in the universal weight system. Weight systeptiadsd to
representations are said to d@oredby the representations.

Our main goal in this section is to prove
Theorem 3. The universal weight systems associated to the Lie algslk2a and

to the Lie superalgebrgl(1|1) depend on the intersection graphs of chord diagrams
rather than on the diagrams themselves.

Thus, we have the commutative diagram

Ws1(2)

{chord diagramss U(sl(2))5@

\/

{intersection graphs

and similarly forWgq)y). It follows immediately that the canonical knot invariants
corresponding to these two algebras do not distinguish mutantss[9r this fact is
already known, since this weight system is the one of the colored Johgwpual;
nevertheless, we give a direct proof on the intersection graphs side.

Note that for more complicated Lie algebras the statement of TheB8ismo longer
true. For example, the universd(3) weight system distinguishes between the Conway
and the Kinoshita—Terasaka knots.

In fact, for each of the two algebras we prove more subtle statements.

Theorem 4. The universal weight systeMV, >y depends on the matroid of the
intersection graph of a chord diagram rather than on the intersectioh isaff.

This theorem inevitably leads to numerous questions concerning relatidretiipen
weight systems and matroid theory, which specialists in this theory may find worth
being investigated.
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Weight systems have a graph counterpart, so-called 4-invariantspifgfis8]. These
are linear functions on the 4-bialgeh#a of graphs, which is a graph counterpart of
chord diagrams. The knowledge that a weight system depends only imtefsection
graphs does not guarantee, however, that it arises from a 4-inualgparticular, we
do not know, whether this is true for the universgP) weight system. Either positive
(with an explicit description) or negative answer to this question would reraely
interesting. Forl(1|1), the answer is positive.

Theorem 5. The universal weight systeM/y 1) s induced by a4-invariant of
graphs.

Thus, forWjq1), the commutative triangle acquires the form

W
An/(4T) Y u(gi(a]1))R@D

N7

Fn

For small orders, the fact tha;j1) depends on intersection graphs only was estab-
lished in an undergraduate thesis work of David Jordan at the Univefs@yegon.

In the first two subsections below, we recall the construction of uravexgight
systems associated to Lie algebras and the notion of 4-invariant of grapbsext

two subsections are devoted to separate treating of the Lie alg&Bjaand the Lie
superalgebragl(1]1) universal weight systems. The last subsection contains Ohtsuki’s
proof of Theorens.

4.1 Weight systems via Lie algebras

Our approach follows that of Kontsevich ihd]. In order to construct a weight system,
we need a complex Lie algebgaendowed with a nondegenerate invariant bilinear
form (-, -). The invariance requirement means thafy, z) = ([x, Y], 2 for any three
elements,y, z € g. Pick an orthonormal basi, . .., aq, (a;,d) = d;j, d being the
dimension ofg. Any chord diagram can be made into an arc diagram by cutting the
circle at some point and further straightening it. For an arc diagramanftcs, write

on each arc an indexbetween 1 andl, and then write on both ends of the arc the
letter a;. Reading all the letters left to right we obtain a word of lengthi2 the
alphabetay, ..., a4, which is an element of the universal enveloping algebra of our
Lie algebra. The sum of all these words over all possible settings of tlexésds
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the element of the universal enveloping algebi@) assigned to the chord diagram.
This element is independent of the choice of the cutting point of the circlejeds

as the orthonormal basis. It belongs to the cektéy)? of the universal enveloping
algebra and satisfies the 4-term relation, whence can be extended tohd sysiggm.
The latter is called theniversal weight systemssociated to the Lie algebra and the
bilinear form, and is denoted by;; it can be specialized to specific representations
of the Lie algebra as in the original Bar-Natan’'s approach. Obviousiyuaiversal
weight system is multiplicative: its value on a product of chord diagrams ict@ac
with the product of its values on the factors.

The simplest noncommutative Lie algebra with a nondegenerate invariantbiloren
is s[(2). Itis 3-dimensional, and the centdi(s((2))*® of its universal enveloping
algebra is the ringC[c] of polynomials in a single variable, the Casimir element.
The corresponding universal weight system was studied in detdl.ift fattracts a lot
of interest because of its equivalence to the colored Jones polynomials.

In [20], Kontsevich’s construction was generalized to Lie superalgebras,ttas
construction was elaborated itq] for the simplest non-commutative Lie superalgebra
al(1/1). The centet(gl(1/1))?"™Y of the universal enveloping algebra of this algebra
is the ring of polynomialsC[c,y] in two variables. The value of the corresponding
universal weight system on a chord diagram witlthords is a quasihomogeneous
polynomial inc andy, of degreen, where the weight of is set to be 1, and the weight
of y is set to be 2.

4.2 The4-bialgebra of graphs

By a graph, we mean a finite undirected graph without loops and multiple etges
Gn denote the vector space freely spanned @vey all graphs withn vertices,Go = C
being spanned by the empty graph. The direct sum

G§G=0G02G19 G2 ...

carries a natural structure of a commutative cocommutative graded Heiralgrhe
multiplication in this Hopf algebra is induced by the disjoint union of graphs,thed
comultiplication is induced by the operation taking a gr&pimto the sumy S Gy ® G,
whereU is an arbitrary subset of vertices &, U its complement, an@Gy denotes
the subgraph o6 induced byU .

The 4term relation for graphdgs defined in the following way. By definition, the
4-term elemenin G, determined by a grap® with n vertices and an ordered pair
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A, B of its vertices is the linear combination
G — G/AB - éAB + é/AB7
where
e Gjg is the graph obtained by deleting the edg®@ in G;
o Gag is the graph obtained by switching the adjacencytof all the vertices
adjacent taB in G;
o ]B is the graph obtained by deleting the edi in Gjg (or, equivalently, by
switching the adjacency ta of all the vertices adjacent B in Gjg).

All the four terms in a 4-term element have the same numbef vertices. The
guotient ofG, modulo the span of all 4-term elementsip (defined by all graphs and
all ordered pairs of adjacent vertices in each graph) is denotef, byrhe direct sum

F=FodpF1eFrd...

is the quotient Hopf algebra of graphs, called théidlgebra The mapping taking

a chord diagram to its intersection graph extends to a graded Hopf alya@m@mor-
phism~ : A — F from the Hopf algebra of chord diagrams to the Hopf algebra of
graphs.

Being commutative and cocommutative, the 4-bialgebra is isomorphic to the polyno-
mial ring in its basic primitive elements, that is, it is the tensor pro®Bt) ® S(P») ®
. of the symmetric algebras of its homogeneous primitive spaces.

4.3 Thesl(2) weight system

Our treatment of the universal weight system associated with the Lie alg&L)

is based on the recurrence formula for computing the value of this weigtegrayon
chord diagrams due to Chmutov and VarchenKp [The recurrence states that if a
chord diagram contains a leaf, that is, a chord intersecting only one dibed, then
the value ofWj) on the diagram is— 1/2) times its value on the result of deleting
the leaf, and, in addition,

b-E-0D-B-%
meaning that the value &) on the chord diagram on the left-hand side coincides

with the linear combinations of its values on the chord diagrams indicated on ke rig

Now, in order to prove Theoreffor the universakl(2) weight system, we must prove
that mutations of a chord diagram preserve the values of this weight sy3egm.a
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chord diagram and a share init. Apply the above recurrence formulaiord and two
its neighbors belonging to the chosen share. The recurrence relagsmdbaffect the
complementary share, while all the instances of the modified first sharegnieisthan
the initial one (each of them contains either fewer chords or the same noifrdberds
but with fewer intersections). Repeating this process, we can replaodgimal share
by a linear combination of the simplest shares, chains, which are symmetricngean
that they remain unchanged under rotations. ¥2) case of Theorer8 is proved.

O
Now let us turn to the proof of Theorefh For elementary notions of matroid theory
we refer the reader to any standard reference, sa&®1io Recall that a matroid can be
associated to any graph. It is easy to check that the matroid associatediisjofre
union of two graphs coincides with that for the graph obtained by identifgiagrtex
in the first graph with a vertex in the second one. We call the result of ghuirertex
in a graphG; to a vertex in a grapl, a 1-productof G; and Gz. The converse
operation is 1deletion Of course, the 1-product depends on the choice of the vertices
in each of the factors, but the corresponding matroid is independernsattbice.

Similarly, let G;, G, be two graphs, and pick vertices, v1 in G andua, v, in G.
Then the matroid associated to the graph obtained by identifyingith u, andv;
with v, coincides with the one associated to the graph obtained by identifyimgth

Vo and up with vi. The operation taking the result of the first identification to that of
the second one is called tNéhitney twision graphs.

Both the 1-product and the Whitney twist have chord diagram analoggwbahord
diagrams with a distinguished chord in each of them, we define their 1-pgradw
chord diagram obtained by replacing the distinguished chords in the oyginaduct
of chord diagrams chosen so as to make them neighbors by a single cnorettng
their other ends. The Whitney twist also is well defined because of the faljow
statement.

Lemma 1. Suppose the intersection graph of a chord diagram is the result of idegtif
two pairs of vertices in two graphS, and G,. Then both graph&: and G, are
intersection graphs, as well as the Whitney twist of the original graph.

The assertion concerning the grap@s and G, is obvious. In order to prove that
the result of the Whitney twist also is an intersection graphg¢iet, denote the two
chords in a chord diagra@ such that deleting these chords makemto an ordinary
product of two chord diagramS;, C,. By reflecting the diagran®, and restoring the
chordsc; andc, we obtain a chord diagram whose intersection graph is the result of
the desired Whitney twist. The lemma is proved.
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According to the Whitney theorem, two graphs have the same matroid iff thelyecan
obtained from one another by a sequence of 1-products/deletions laitraEytwists.
Therefore, Theorem follows from

Lemma 2. (i) The value oMW, 2) on thel-product of chord diagrams coincides with
the product of its values on the factors dividedady(ii) The value oMW,y remains
unchanged under the Whitney twist of the chord diagram.

Statement (i) is proved irY]. The proof of statement (ii) is similar to that of Theor8m
Consider the parC, participating in the Whitney twist and apply to it the recurrence
relations. Note that the relations do not affect the complementary dia@far&impli-

fying the partC, we reduce it to a linear combination of the simplest possible diagrams,
chains, which are symmetric under reflection. Reflecting a chain presegmwehord
diagram, whence the value of th&2) weight system. Theorerhis proved. O

4.4 Thegl(1]1) weight system

Define the (unframedfonway graph invariantvith values in the ring of polynomi-
als C[y] in one variabley in the following way. We set it equal to-)"/? on graphs
with n vertices if the adjacency matrix of the graph is nondegenerate, and Qviger
Recall that the adjacency matri of a graphG with n vertices is am x n-matrix
with entries inZ, obtained as follows. We choose an arbitrary numbering of the
vertices of the graph, and the entay is 1 provided thei th and thej th vertices
are adjacent and 0 otherwise (diagonal elemaptare 0). Note that for odd, the
adjacency matrix cannot be nondegenerate, hence the values indeedhe ring of
polynomials. The Conway graph invariant is multiplicative: its value on the disjoin
union of graphs is the product of its values on the factors.

Clearly, the Conway graph invariant is a 4-invariant. Moreover, it satigfie 2-term
relation, which is more restrictive than the 4-term one: its values on the g@ph
and Gag coincide for any grapl& and any pair of ordered verticés B in it. Indeed,
consider the graph as a symmetric bilinear form onZhevector space whose basis
is the set of vertices of the graph, the adjacency matrix being the matrix oilitiesin
form in this basis. In these terms, the transformati®»n- (~3AB preserves the vector
space and the bilinear form, but changes the baAsB C,--- — A+ B,B,C,....
Thus, it preserves the nondegeneracy property of the adjacendy.matr

The subspacé; is spanned by the gragh with a single vertex (whence no edges),
which is a primitive element. Sincg is the polynomial ring in its primitive elements,
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each homogeneous spa# admits a decomposition into the direct sum of two
subspaces, one of which is the subspace of polynomials in primitive elenieleigree
greater than 1, and the other one is the space of polynomials divisibjg .byVe
define theframed Conway graph invariaras the only multiplicative 4-invariant with
values in the polynomial ring-[c, y] whose value orp; is ¢, and on the projection

of any graph to the subspace pf-independent polynomials along the subspace of
p1-divisible polynomials coincides with the Conway graph invariant of thelgrap

The values of the framed Conway graph invariant can be computedsieslyr Take

a graphG and consider its projection to the subspace of graphs divisiblg; byOn
this projection, the framed Conway graph invariant can be computed leechits
multiplicativity. Now add to the result the value of the (unframed) Conway lgrap
invariant on the graph. Now we can refine the statement of thebrem

Theorem 6. Thegl(1|1) universal weight system is the pullback of the framed Conway
graph invariant to chord diagrams under the homomorphism

Proof. The proof follows from two statements ii1(]. Theorem 3.6 there states

that settingc = 0 in the value ofWq 1) on a chord diagram we obtain the result

of deframing this weight system. Theorem 4.4 asserts that this value is eitaetly

Conway invariant of the chord diagram. The latter coincides with the Comnagyh

invariant of the intersection graph of the chord diagrams defined abSimce the

deframing for chord diagrams is a pullback of the deframing for grapbsare done.
O

4.5 Ohtsuki’'s proof of Theorem3

In this section, we reproduce the proof of Theor8ndue to T. Ohtsuki (private
communication). The proof uses the algebi§ 1), C(1 1), and B(x,y). We shall
use the terminology and notation @] pnd refer the reader to this book for their precise
definitions and properties. Herd(7 1) is the algebra of chord diagrams supported on
two vertical arrows! T modulo the 4T-relationC(7 1) is the algebra oflosed Jacobi
diagramson 7 T modulo the AS, IHX, and STU relations, aif{x, y) is the algebra of
open Jacobi diagramwith univalent vertices labeled byandy modulo the AS, IHX,
and thdink relations. All the three algebras are isomorphic to one anotherghee [

For each of these algebras and for a Lie (super)alggbwath an invariant scalar
product, one can define a universal weight syswwhich takes values inU(g) ®
U(g))? in the case of the algebra&(1 1) andC(1 1), and in §g) ® Yg))? in the case



18 S. V. Chmutov and S. K. Lando

of the algebra3(x,y). Here S(g) denotes the symmetric tensor algebra of the vector
spaceg. Butaccording to the PoinoarBirkhoff-Witt theorem, the vector spadg¢g)

and S(g) are isomorphic. Therefore, we may think that the universal weigtiesys
W, takes values in{(g) ® U(g))®¢ for all the three algebras.

Theorem3 would follow from the symmetry of the image of a chord diagramign
as we insert it into a chord diagram on a circle and take the universahtvgigtem
W, with values inU(g)®.

The g = sl(2) case.Here U(sl(2)) ® U(s1(2))*'@ is generated by the three elements

c®1l, 1®c, andWgy) (H) , Wherec is the Casimir element ibJ(s[(2)). Obviously,
after inserting them into a chord diagram on a circle they become symmetric.

The g = gl(1|1) case. The universal weight system/; ;) vanishes on any Jacobi
diagram containing either of the fragments

S o

The quotient space @(x, y) modulo Jacobi diagrams with these fragments is generated
by the diagrams

y
X Xy Xy Xy X I

and

y y
where the notatiorx,y means that the corresponding univalent vertices are labeled
either byx or by y. These diagrams become symmetric after the insertion into a chord
diagram on the circle modulo the above mentioned diagrams. O



Mutant knots and intersection graphs 19

References

[1] The knot Atlashttp://katlas.math.toronto.edu/wiki/Main_Page
[2] D. Bar-NatanOn Vassiliev knot invariantSopology,34, 423—-472 (1995)

[3] A. BouchetReducing prime graphs and recognizing circle grap@Gembinatoricay,
no. 3, 243-254 (1987)

[4] A. BouchetCircle graph obstructionsJ. Combin. Theory Ser. B0, no. 1, 107—
144 (1994)

[5] S. V. Chmutov, S. V. Duzhin, S. K. Landdassiliev knot invariants |. Introduction
Advances in Soviet Mathematics, v@ll, 117-126 (1994)

[6] S. Chmutov, S. Duzhin, J. MostovoyCDBooK. Introduction to Vassiliev Knot
invariants. (a preliminary draft version of a book about Chord Diagrgms.
http://www.math.ohio-state.edu/ chmutov/preprints/

[7] S.V.Chmutov, A. N. Varchenkdiemarks on the Vassiliev knot invariants coming from
sl,, Topology36, no. 1, 153-178 (1997)

[8] B. CourcelleCircle graphs and Monadic Second-order logiereprint, June 2005,
http://www.labri.fr/perso/courcell/ArticlesEnCours/CircleGraphsSubmitted.pdf

[9] W. H. Cunningham,Decomposition of directed graph$IAM J. Algor. Discrete
Math.3, no. 2, 214-228 (1982)

[10] J. M. Figueroa-O’Farrill, T. Kimura, A. Vaintrol,he universal Vassiliev invariant for
the Lie superalgebral(1|1), Comm. Math. Physl85, no. 1, 93-127 (1997)

[11] C.P. Gabor, K. J. Supowit, W.-L. HsRecognizing circle graphs in polynomial time
Journal of the ACM (JACM) (3)36, no. 3, 435-473 (1989)

[12] M. Kontsevich,Vassiliev’s knot invariantsAdv. Soviet Math. 16, Part 2, AMS, Prov-
idence RI, 137-150 (1993)

[13] S. K. Lando, On a Hopf algebra in graph theory, J. Comtedri Series B0, no. 1,
104-121 (2000)

[14] S. K. Lando, A. K. Zvonkin,Graphs on surfaces and their applicatiorSpringer
(2004)

[15] T. Q. T. Le, J. Murakami;The universal Vassiliev-Kontsevich invariant for framed
oriented links Compositio Math102, no. 1, 41-64 (1996)

[16] B. Mellor, Intersection graphs for string linksl. Knot Theory Ramifl5, no. 1, 53-
72 (2006).

[17] H. R. Morton, P. R. CromwellDistinguishing mutants by knot polynomiallk Knot
Theory Ramif5 225-238 (1996)



20

(18]

[19]

[20]

[21]

S. V. Chmutov and S. K. Lando

J. Murakami, Finite type invariants detecting the mutant knot€not Thoery.
A volume dedicated to Professor Kunio Murasugi for his 70ilthbay. Edi-
tors: M. Sakuma et al.,, Osaka University, March 2000. Pnrtps available at
http://www.f.waseda. jp/murakami/papers/finitetype.pdf

C. Soule, Complete invariant graphs of alternating knpts Preprint
arXiv:math.C0/0404490.

A. Vaintrob, Vassiliev knot invariants and Lie S-algebrddath. Res. Lettl, no. 5,
579-595 (1994)

D. J. A. WelshMatroid theory Academic Press, London (1976)

The Ohio State University - Mansfield, 1680 University Drikansfield, OH 44906, USA

Institute for System Research RAS and the Poncelet Labgrdtalependent University of
Moscow, Bolshoy Vlasyevskiy Pereulok 11, Moscow 119002s3Ra

chmutov@math.ohio-state.edu, lando@lando.mccme.rssi.ru

http://www.math.ohio-state.edu/~chmutov/,
http://www.mccme.ru/ium/~lando/



