Algebra and Geometry around Knots and Braids Euler Institute, St. Petersburg, Russia September 10 – 14, 2007

Thistlethwaite's theorem for virtual links

Sergei Chmutov

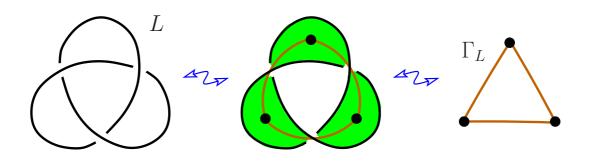
The Ohio State University, Mansfield

Joint work with Jeremy Voltz

M. B. Thistlethwaite,

L. Kauffman, K.Murasugi, F.Jaeger

Up to a sign and a power of t the Jones polynomial $V_L(t)$ of an alternating link L is equal to the Tutte polynomial $T_{\Gamma_L}(-t, -t^{-1})$.



$$V_L(t) = t + t^3 - t^4$$

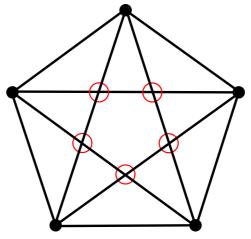
$$= -t^2(-t^{-1} - t + t^2)$$

$$T_{\Gamma_L}(x, y) = y + x + x^2$$

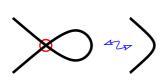
$$T_{\Gamma_L}(-t, -t^{-1}) = -t^{-1} - t + t^2$$

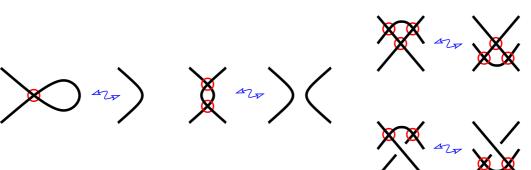
Virtual links

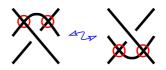
Virtual crossings



Reidemeister moves







The Kauffman bracket

Let L be a virtual link diagram.

A-splitting:
$$-$$
 either A - or B -splitting at every classical crossing.

A state S is a choice of

$$\alpha(S) = \#(\text{of } A\text{-splittings}$$

in $S)$

$$\beta(S) = \#(\text{of } B\text{-splittings}$$

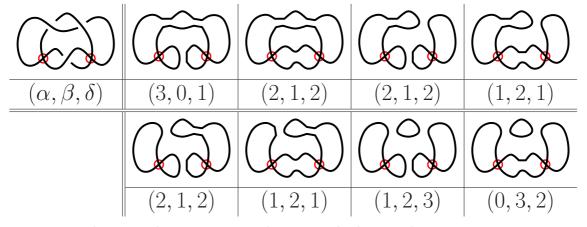
in $S)$

$$\delta(S) = \#(\text{of circles in } S)$$

$$\boxed{ [L](A,B,d) \; := \; \sum_{S} \, A^{\alpha(S)} \, B^{\beta(S)} \, d^{\delta(S)-1} }$$

$$J_L(t) := (-1)^{w(L)} t^{3w(L)/4} [L] (t^{-1/4}, t^{1/4}, -t^{1/2} - t^{-1/2})$$

Example



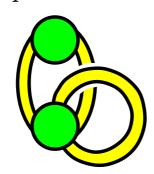
$$[L] = A^3 + 3A^2Bd + 2AB^2 + AB^2d^2 + B^3d; J_L(t) = 1$$

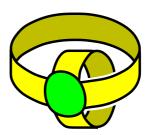
Ribbon graphs

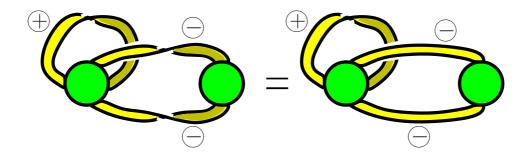
A ribbon graph G is a surface represented as a union of verticesdiscs and edges-ribbons

- discs and ribbons intersect by disjoint line segments,
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two such line segments.

Examples







The Bollobás-Riordan polynomial

- Let \bullet F be a ribbon graph;
 - v(F) be the number of its vertices;
 - e(F) be the number of its edges;
 - k(F) be the number of components of F;
 - r(F) := v(F) k(F) be the rank of F;
 - n(F) := e(F) r(F) be the **nullity** of F;
 - bc(F) be the number of boundary components of F;
 - $\bullet \ s(F) := \frac{e_{-}(F) e_{-}(\overline{F})}{2} \ .$

$$R_G(x,y,z) := \sum_{x} x^{r(G)-r(F)+s(F)} y^{n(F)-s(F)} z^{k(F)-\operatorname{bc}(F)+n(F)}$$

 $\sum_{F} x^{r(G)-r(\Gamma)+\delta(\Gamma)}y^{r(\Gamma)-\delta(\Gamma)}z^{r(\Gamma)-\delta(\Gamma)+r(\Gamma)}$

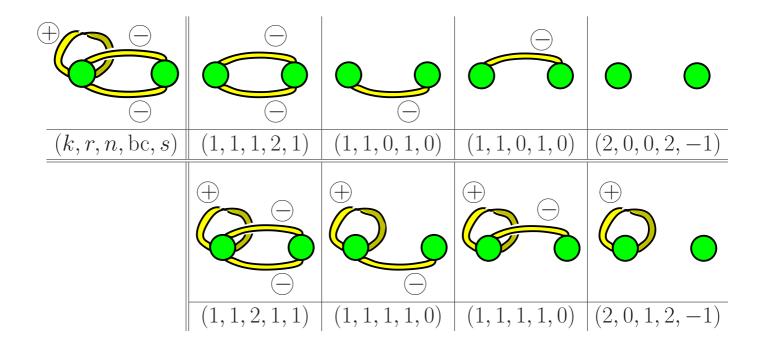
Relations to the Tutte polynomial.

$$R_G(x-1, y-1, 1) = T_G(x, y)$$

If G is planar (genus zero):

$$R_G(x-1, y-1, z) = T_G(x, y)$$

Example



- $\bullet \ r(F) := v(F) k(F);$
- $\bullet \ n(F) := e(G) r(F);$
- bc(F) is the number of boundary components;

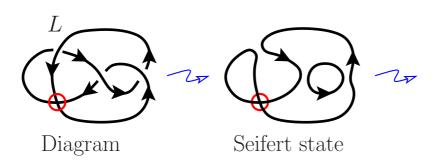
$$\bullet \ s(F) := \frac{e_-(F) - e_-(\overline{F})}{2} \ .$$

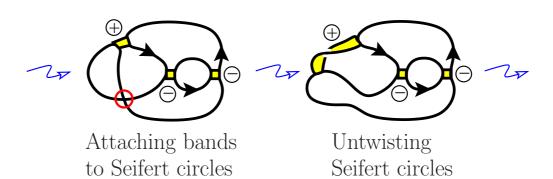
$$R_G(x, y, z) = x + 2 + y + xyz^2 + 2yz + y^2z$$
.

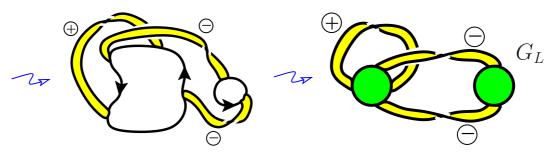
Theorem

Let L be a virtual link diagram, G_L be the corresponding signed ribbon graph, and $n := n(G_L)$, $r := r(G_L)$, $k := k(G_L)$. Then

$$[L] = A^n B^r d^{k-1} R_{G_L} \left(\frac{Ad}{B}, \frac{Bd}{A}, \frac{1}{d} \right) .$$







Pulling Seifert circles apart

Glue in the vertex-discs