Edge-reconstruction of the genus of one-vertex graphs on surfaces.

OSU Combinatoric seminar. Thursday, Nov. 15, 2007, 11:30

1) Reconstruction problems

2) Graphs on surfaces ⊃ ribbon graphs ⊃ rotation systems
 One-vertex ribbon graphs = chord diagrams on a circle

3) edge-reconstruction of graphs on surfaces

4) edge-reconstruction of the genus of one-vertex graph

5) Proof

\(G \leftarrow \text{vertex-reconstruction} \)

\[V(G) = \{ v_1, \ldots, v_n \} \quad \text{for all } i \]

\[E(G) = \{ e_1, \ldots, e_m \} \]

Vertex-reconstruction conjecture: If \(n \geq 3 \) then \(G \) is reconstructible.

Exception \(n = 2 \): \(G = \Delta_0 \), \(G' = \Delta \)

Edge-reconstruction conjecture: If \(m \geq 4 \) then \(G \) is edge-reconstructible.

\[G \leftarrow \text{edge-reconstruction} \{ G - e_i \} \quad \text{for } i = 1, \ldots, m \]

Exception \(m = 3 \): \(G = \Delta_0, G' = \Gamma_0 \) and \(G = \Delta, G' = \Delta_0 \)

2) Graphs on surfaces. Orientable cell-edge embedding \(\Gamma \to \Sigma \)

- ribbon graph \(\mathcal{G} \)
- a surface \(\Sigma = (V(G), E(G)) \) and \(\mathcal{E}(G) \)
- the vertices and edges intersect by disjoint line segments.
- each such segment lies on exactly one vertex and exactly one edge.
- every edge contains exactly two such segments.
ribbon graph \rightarrow rotation system \rightarrow chord diagrams

= cyclic order of half-edges at each vertex

3. Edge-reconstruction of a graph on surface = means a reconstruction of rotation system from edge-deleted rotation systems

4. In. The genus of an oriented one-vertex ribbon graph is edge reconstructible. (if $n \geq 3$)

If e' and e'' belongs to the same boundary compound (face) of G', then t is decreased by 1.

$$t(G) = t(G-e) - 1$$

If e' and e'' lies in different faces e' and e'', then t is increased by 1.

$$t(G) = t(G-e) + 1$$

1. If $t(G-e_1) \neq t(G-e_2)$ or $t(G-e_1) = t(G-e_2)$, then $t(G) = \frac{t(G-e_1) + t(G-e_2)}{2}$.

2. $t(G-e_1) = t(G-e_2)$ for all i,j. If $t(G-e_i) \neq 2$, then either $t(G-e_1) = 1$ or $t(G) = 2$.

If \(t(G) \geq 3 \Rightarrow t(G) = t(G-e) + 1 \)

Indeed \(t(G) = t(G-e) - 1 \), then for any edge \(e \in E(G) \) the segments \(e^1 \) and \(e^2 \) belong to the same component \(\Gamma \)

\[\Rightarrow t(G) = 1 \]

\[\Rightarrow t(G-e) = 2. \]

3. \(t(G-e) = 2 \) for all \(e \in E(G) \)
 either \(t(G) = 1 \) or \(t(G) = 3 \)

Intersection matrix of \(\Sigma \)

is non-degenerate.

\[\Sigma = \begin{cases} \text{handles} \\ g \end{cases} \]

Intersection form = bilinear form on \(H_4(\Sigma) \)

\[\langle \cdot , \cdot \rangle : H_4(E) \otimes H_4(\Sigma) \to R_2 \]

\[\text{rank}(\langle \cdot , \cdot \rangle) = 2g \]

If \(\Sigma = \Sigma_G \), then \(H_4(\Sigma_G, F_2) \) has a basis determined by edges

\[\dim H_4(\Sigma_G) = m = \text{edges}. \]

Intersection matrix = adjacency matrix \(A(E) \) of the intersection graph \(I_0 \)

\[V(I_0) = \{ v_1, \ldots, v_m \} \]

\[E(I_0) = \{ v_i; v_j \} \]

\[G \rightarrow I_0 \]

Tutte:

\[G-e_i \rightarrow I_0 - v_e_i \]

\[\text{rank}(A(E)) \text{ is vertex reconstructible}. \]