1. Describe the result of cutting a band with \(m \) twists along \(n \) lines parallel to its edge.

![Band with twists](image)

2. Find the genus and the number of boundary components of the surface.

![Surface with genus and boundary components](image)

3. Consider the surface consisting of two discs and \(m \) twisted bands between them. Is it orientable? Find the genus and the number of boundary components.

4. Find the numbers of cross-caps and the numbers of boundary components for the following surfaces.

![Surfaces with cross-caps and boundary components](image)

5. Prove that the Euler characteristics \(\chi \) and the genus \(g \) of a closed orientable surface are related as \(\chi = 2 - 2g \).

6. Prove that the Euler characteristics \(\chi \) and the number of cross-caps \(\mu \) of a closed non-orientable surface are related as \(\chi = 2 - \mu \).

7. Find a minimal triangulation of a torus.

8. Find a minimal triangulation of a Klein bottle.