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Knots and Graphs.

https://people.math.osu.edu/chmutov.1/wor-gr-su15/wor-gr.htm

2006. Jeremy Voltz, Thistlethwaite’s theorem for virtual links.

M. B. Thistlethwaite, L. Kauffman, K.Murasugi, F.Jaeger

Up to a sign and a power of t the Jones polynomial VL(t) of an
alternating link L is equal to the Tutte polynomial TΓL(−t ,−t−1).

L

ΓL

VL(t) = t + t3
− t4 TΓL(x , y) = y + x + x2

= −t2(−t−1
− t + t2) TΓL(−t ,−t−1) = −t−1

− t + t2
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Knots
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Knot Table

31 41 51 52 61

62 63 71 72 73
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Unknots = Trivial Knots
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Knot isotopy
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Reidemeister moves

Planar isotopy:

RI: RII:

RIII:
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Virtual links.

Virtual crossings

Reidemeister moves
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The Kauffman bracket.

Let L be a virtual link diagram.

A-splitting:

B-splitting:

A state S is a choice of either A- or B-splitting
at every classical crossing.

α(S) := #(of A-splittings in S)

β(S) := #(of B-splittings in S)

δ(S) := #(of circles in S)

[L](A,B, d) :=
∑

S

Aα(S) Bβ(S) dδ(S)−1

JL(t) := (−1)w(L)t3w(L)/4[L](t−1/4, t1/4,−t1/2
− t−1/2)
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The Kauffman bracket. Example.

L = (α, β, δ)

(3, 0, 1) (2, 1, 2) (2, 1, 2) (1, 2, 1)

(2, 1, 2) (1, 2, 1) (1, 2, 3) (0, 3, 2)

[L] = A3 + 3A2Bd + 2AB2 + AB2d2 + B3d ; JL(t) = 1
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Ribbon graphs

A ribbon graph R is a surface represented as a union of

vertices-discs and edges-ribbons

discs and ribbons intersect by disjoint line segments,

each such line segment lies on the boundary of precisely
one vertex and precisely one edge;

every edge contains exactly two such line segments.

=
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Bollobás-Riordan polynomial

Let F be a ribbon graph;

v(F ) be the number of its vertices;

e(F ) be the number of its edges;

k(F ) be the number of components of F ;

r(F ) := v(F )− k(F ) be the rank of F ;

n(F ) := e(F )− r(F ) be the nullity of F ;

bc(F ) be the number of boundary components of F ;

s(F ) := (e
−
(F )− e

−
(F ))/2 .

RG(x , y , z) :=
∑

F

x r(G)−r(F )+s(F )yn(F )−s(F )zk(F )−bc(F )+n(F )
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Bollobás-Riordan polynomial. Example.

L =

+
−

−

(k , r , n, bc, s)

−

− −

−

(1, 1, 1, 2, 1) (1, 1, 0, 1, 0) (1, 1, 0, 1, 0) (2, 0, 0, 2,−1)

+
−

−

+

−

+
−

+

(1, 1, 2, 1, 1) (1, 1, 1, 1, 0) (1, 1, 1, 1, 0) (2, 0, 1, 2,−1)

RG(x , y , z) = x + 2 + y + xyz2 + 2yz + y2z .
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Problem.

Make a construction
of a ribbon graph from
a link diagram and
relate the parameters
(α, β, δ) with param-
eters (k , r , n, bc, s)
(possibly after some
substitution).
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Construction.

Diagram L Seifert state

−
−

+

Attaching bands
to Seifert circles

−
−

+

Untwisting Seifert
circles

−

−

+

Pulling Seifert
circles apart

−

+ −

Glue in the
vertex-discs

GL
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Main Theorem.

Let L be a virtual link diagram, GL be the corresponding signed
ribbon graph, and n := n(GL), r := r(GL), k := k(GL). Then

[L](A,B, d) = AnBr dk−1 RGL

(

Ad
B

,
Bd
A

,
1
d

)

.
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THANK YOU!
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