Higher dimensional graph theory

Sergei Chmutov
Ohio State University, Mansfield

Dartmouth College Colloquium

Thursday, March 3, 2016
4:00–5:00pm
A coloring of \(G \) with \(x \) colors is a map \(c : V(G) \to \{1, \ldots, x\} \). A coloring \(c \) is proper if for any edge \(e = (v_1, v_2) \): \(c(v_1) \neq c(v_2) \).

\[
\chi_G(x) := \text{# of proper colorings of } G \text{ in } x \text{ colors.}
\]

Properties .

- \(\chi_G = \chi_{G-e} - \chi_{G/e} \);
- \(\chi_{G_1 \sqcup G_2} = \chi_{G_1} \cdot \chi_{G_2} \); for a disjoint union \(G_1 \sqcup G_2 \);
- \(\chi_{\bullet} = x \);
- \(\chi_G(x) = \sum_{F \subseteq E(G)} (-1)^{|F|} x^{k(F)} \),
 where the sum runs over all spanning subgraphs \(F \) and \(k(F) \) is the number of connected components of \(F \).
Dichromatic polynomial $Z_G(x, t)$ of graphs.

\[
Z_G(x, t) := \sum_{c \in Col_G(x)} t^{\text{\# edges colored not properly by } c}
\]

Properties.

- $\chi_G(x) = Z_G(x, 0)$;
- $Z_G = Z_{G-e} + (t - 1)Z_{G/e}$;
- $Z_{G_1 \sqcup G_2} = Z_{G_1} \cdot Z_{G_2}$, for a disjoint union $G_1 \sqcup G_2$;
- $Z_{\cdot} = x$;
- $Z_G(x, t) = \sum_{F \subseteq E(G)} x^{k(F)}(t - 1)^{|F|}$;
- $Z_G(x, t)$ is the partition function of the Potts model in statistical mechanics.
Tutte polynomial $T_G(x, v)$ of graphs.

$$T_G(x, y) := (x - 1)^{-k(G)}(y - 1)^{-v(G)}Z_G((x - 1)(y - 1), y).$$

Properties.

- $T_G = T_{G-e} + T_{G/e}$ if e is neither a bridge nor a loop;
- $T_G = xT_{G/e}$ if e is a bridge;
- $T_G = yT_{G-e}$ if e is a loop;
- $T_{G_1 ∪ G_2} = T_{G_1 · G_2} = T_{G_1} · T_{G_2}$ for a disjoint union $G_1 ∪ G_2$ and a one-point join $G_1 · G_2$;
- $T_\bullet = 1$;

$$T_G(x, y) := \sum_{F \subseteq E(G)} (x - 1)^{k(F) - k(G)}(y - 1)^{e(F) - v(F) + k(F)}.$$
Specializations of $T_G(x, v)$.

- $\chi_G(x) = (-1)^{|V(G)|}(-x)^{k(G)} T_G(1-x, 0)$;
- $T_G(1, 1) = \# \text{ of spanning trees of } G$;
- $T_G(2, 1) = \# \text{ of spanning forests of } G$;
- $T_G(1, 2) = \# \text{ of spanning connected subgraphs of } G$;
- $T_G(2, 2) = 2^{|E(G)|} = \# \text{ of spanning subgraphs of } G$;

Flow polynomial:

$F_G(y) = (-1)^{|E(G)|E+|V(G)|+k(G)} T_G(0, 1-y)$;

- For planar G: $T_G(x, y) = T_G^*(y, x)$
Cayley’s and Kalai’s formulas for \# of spanning trees.

A. Cayley, 1889 (C. Borchardt, 1860): \# of spanning trees of K_n
\[
= n^{n-2}.
\]

G. Kalai, 1983: \# of j dimensional spanning trees of an $(n-1)$ dimensional simplex
\[
= n \binom{n-2}{j}.
\]
Cellular spanning trees.

K finite cell (CW) complex of dimension k.

$K_{(j)}$ j-skeleton of K.

Spanning subcomplex S of dimension j: $K_{(j-1)} \subseteq S \subseteq K_{(j)}$.

S_j set of all spanning subcomplexes of dimension j.

$f_j(S)$ # of j-cells of S.

$\tilde{\beta}_j(S)$ reduced j-th Betti number $= rank(\tilde{H}_j(S; \mathbb{Z}))$.

Definition. A j-dimensional **Cellular Spanning Tree** (j-CST) S of K is a j-dimensional spanning subcomplex such that:

$$\tilde{H}_j(S) = 0, \quad \tilde{\beta}_{j-1}(S) = 0, \quad (|\tilde{H}_{j-1}(S)| < \infty).$$

$T_j(K)$ set of all j-CST’s of K.

$$\tilde{\tau}_j(K) := \sum_{S \in T_j(K)} |\tilde{H}_{j-1}(S)|^2$$
Kalai’s theorem (1983). If K is a simplex with n vertices, $k = n - 1$, then

$$\sum_{S \in \mathcal{T}_j(K)} |\tilde{H}_{j-1}(S)|^2 = \tilde{\tau}_j(K) = n^\binom{n-2}{j}.$$

Example. $n = 6, j = 2$.
46608 contractible 2-CST’s; 12 homeomorphic to $\mathbb{R}P^2$.
$H_1(\mathbb{R}P^2) = \mathbb{Z}_2 \implies 46608 + 12 \times 4 = 46656 = 6^6$.

R. Bott, 1952: \[R_K(\lambda) := \sum_{S \in \mathcal{S}_k} (-1)^{f_k(K) - f_k(S)} \lambda^{\beta_k(S)}. \]

Z. Wang, 1994: For \(k = 1 \), the Bott polynomial is essentially the flow polynomial of the graph \(K \).
V. Krushkal, D. Renardy, 2010: For $1 \leq j \leq k$,

$$T^j_K(x, y) := \sum_{S \in S_k} x^{\beta_{j-1}(S) - \beta_{j-1}(K)} y^{\beta_j(S)}.$$

- $T^1_K(x, y) = T_{K(1)}(x + 1, y + 1)$.
- For dual cellulations K and K^* of the sphere S^k,

$$T^j_K(x, y) = T^{k-j}_{K^*}(y, x).$$
Dual cellulations.

\[\{ j \text{ - cells of } K \} \leftrightarrow \{ (k - j) \text{ - cells of } K^* \} \]
C. Bajo, B. Burdick, S. Ch., 2014:

\[\tilde{T}_j^i(K, x, y) := \sum_{S \in S_k} |\text{tor}(H_{j-1}S)|^2 x^{\beta_{j-1}(S)-\beta_{j-1}(K)} y^{\beta_j(S)}. \]

- If \(\tilde{\beta}_j(K) = 0, 1 \leq j < k \), then \(\tilde{T}_j^i(0, 0) = \tilde{\tau}_j(K) \).
- For dual cellulations \(K \) and \(K^* \) of the sphere \(S^k \),

\[\tilde{T}_j^i(K, x, y) = \tilde{T}_{k-j}^{k}(y, x) \]

\[R_K(\lambda) = (-1)^{\beta_k(K)} T_k^k(-1, -\lambda). \]
Let $\sigma \in K$ be a k-cell, $\overline{\sigma}$ be its closure in K, and $\partial \sigma := \overline{\sigma} - \sigma$ be its boundary. $\overline{\sigma}$, $\partial \sigma$, $K - \sigma$, and $K/\overline{\sigma}$ inherit the cellular structure from K.

Definition.

- σ is a *loop* in K if $H_k(\overline{\sigma}) \cong \mathbb{Z}$;
- σ is a *bridge* in K if $\beta_{k-1}(K - \sigma) = \beta_{k-1}(K) + 1$;
- σ is *boundary regular* if $\tilde{H}_{k-1}(\partial \sigma) \cong \mathbb{Z}$.

Sergei Chmutov
Higher dimensional graph theory
Example.

\[K = \Sigma_e \dim \begin{array}{c|c|c|c} \text{cell} & 0 & 1 & 2 \\
\hline p & e & \sigma \\
\end{array} \]

\[K \sim S^2 \lor S^1 \]

\[H_0(K) = H_1(K) = H_2(K) = \mathbb{Z} \]

\[\bar{\sigma} = K \implies \sigma \text{ is a loop.} \]
\[\partial \sigma = e \cup p = S^1. \text{ So } H_1(\partial \sigma) = \mathbb{Z}, \text{ and } \sigma \text{ is boundary regular.} \]
\[T_K^2(x, y) = 1 + y. \]
(i) If σ is neither a bridge nor a loop and is boundary regular, then

$$T^k_K(X, Y) = T^k_{K/\sigma}(X, Y) + T^k_{K-\sigma}(X, Y).$$

(ii) If σ is a loop, then

$$T^k_K(X, Y) = (Y + 1)T^k_{K-\sigma}(X, Y).$$

(iii) If σ is a bridge and boundary regular, then

$$T^k_K(X, Y) = (X + 1)T^k_{K/\sigma}(X, Y).$$
Example.

\[K = \]

\[\sigma' \]

\[\partial \sigma' = e \cup p = S^1. \]

So \(H_1(\partial \sigma') = \mathbb{Z} \), and \(\sigma' \) is boundary regular.

\[T^2_K(x, y) = (x + 1) T^2_{K/\sigma'}(x, y). \]

\[T^2_{K/\sigma'}(x, y) = y + 1. \]

\[T^2_K(x, y) = (x + 1)(y + 1) = xy + x + y + 1 \]
THANK YOU!