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Stanley’s chromatic symmetric function.

R. Stanley, A symmetric function generalization of the

chromatic polynomial of a graph, Advances in Math. 111(1)

166–194 (1995).

XG(x1, x2, ...) :=
∑

κ:V (G)→N

proper

∏

v∈V (G)

xκ(v)

Power function basis. pm :=
∞∑

i=1

xm
i .

Example. X = x̂1x1 + x1x2 + x1x3 + . . .
x2x1 + x̂2x2 + x2x3 + . . .
x3x1 + x3x2 + x̂3x3 + . . .

...
...

. . .

= p2
1 − p2.
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Chromatic symmetric function in power basis.

James Enouen, Eric Fawcett, Rushil Raghavan, Ishaan Shah:

Su’18

XG(x1, x2, ...) =
∑

κ:V (G)→N

all

∏

v∈V (G)

xκ(v)
∏

e=(v1,v2)∈E(G)

(1 − δκ(v1),κ(v2))

=
∑

κ:V (G)→N

all

∏

v∈V (G)

xκ(v)
∑

S⊆EG

(−1)|S|
∏

e∈S

δκ(v1),κ(v2)

∏

e∈S

δκ(v1),κ(v2) =

{
1 all vertices of a connected component of the spanning sub-

graph with S edges are colored by κ into the same color

0 otherwise

XG =
∑

S⊆EG

(−1)|S|pλ(S) , where λ(S) ⊢ |V (G)| is a partition of

the number of verticies according to the connected components

of the spanning subgraph S, and for λ(S) = (λ1, . . . , λk ),
pλ(S) := pλ1

pλ2
. . . pλk

.
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Chromatic symmetric function. Examples.

XG =
∑

S⊆EG

(−1)|S|pλ1
pλ2

. . . pλk

Examples. X = p2
1 − p2,

X = p3
1 − 2p1p2 + p3, X = p3

1 − 3p1p2 + 2p3.

X = p4
1 − 3p2

1p2 + p2
2 + 2p1p3 − p4,

X = p4
1 − 3p2

1p2 + 3p1p3 − p4.

Two graphs with the same chromatic symmetric function:

X = X
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Chromatic symmetric function. Conjectures.

Tree conjecture.

XG distingushes trees.

A (3 + 1) poset is the disjoint union of a 3-element chain and

1-element chain.

A poset P is (3+ 1)-free if it contains no induced (3+ 1) posets.

Incomparability graph inc(P) of P: vertices are elements of P;

(uv) is an edge if neither u 6 v nor v 6 u.

e-positivity conjecture.

The expansion of Xinc(P) in terms of elementary symmetric

functions has positive coefficients for (3 + 1)-free posets P.
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Vassiliev knot invariants.

A knot K = , let K ∋ K be a set of all knots.

A knot invariant v : K → C.

Definition.

A knot invariant is said to be a Vassiliev invariant of order (or

degree) 6 n if its extension to the knots with double points

according to the rule

v( ) := v( )− v( ) .

vanishes on all singular knots with more than n double points.
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Vassiliev knot invariants. Chord diagrams.

The value of v on a singular knot K with n double points does

not depend on the specific knotedness of K . It depends only on

the combinatorial arrangement of double points along the knot,

which can be encoded by a chord diagram of K .

, , .

Algebra of chord diagrams.

An is a C-vector space spanned by chord diagrams modulo

four term relations:

− + − = 0 .
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Vassiliev knot invariants. Bialgebra of chord diagrams.

The vector space A :=
⊕
n≥0

An has a natural bialgebra structure.

Multiplication: × := = .

Comultiplication: δ : An →
⊕

k+l=n

Ak ⊗Al is defined on

chord diagrams by the sum of all ways to split the set of chords

into two disjoint parts: δ(D) :=
∑

J⊆[D]

DJ ⊗ DJ .

Primitive space P(A) is the space of elements D ∈ A with the

property δ(D) = 1 ⊗ D + D ⊗ 1.

P(A) is also a graded vector space P(A) =
⊕
n≥1

Pn.
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Vassiliev knot invariants. Structure of the bialgebra.

The classical Milnor—Moore theorem: any commutative and

cocommutative bialgebra A is isomorphic to the symmetric

tensor algebra of the primitive space, A ∼= S(P(A)).

Let p1, p2, . . . be a basis for the primitive space P(A) then any

element of A can be uniquely represented as a polynomial in

commuting variables p1, p2, . . . .
The dimensions of Pn:

n 1 2 3 4 5 6 7 8 9 10 11 12

dimPn 1 1 1 2 3 5 8 12 18 27 39 55
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Vassiliev knot invariants. Weighted graphs.

S. Chmutov, S. Duzhin, S. Lando, Vassiliev knot invariants III.

Forest algebra and weighted graphs, Advances in Soviet

Mathematics 21 135–145 (1994).
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The intersection graph

Definition. A weighted graph is a graph G without loops and

multiple edges given together with a weight w : V (G) → N that

assigns a positive integer to each vertex of the graph.

Ordinary simple graphs can be treated as weighted graphs with

the weights of all vertices equal to 1.
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Bialgebra of weighted graphs.

Let Hn be a vector space spanned by all weighted graphs of the

total weight n modulo the weighted contraction/deletion relation

G = (G \ e) + (G/e),where the graph G \ e is obtained from G

by removing the edge e and G/e is obtained from G by a

contraction of e such that if a multiple edge arises, it is reduced

to a single edge and the weight w(v) of the new vertex v is set

up to be equal to the sum of the weights of the two ends of the

edge e.

H := H0 ⊕H1 ⊕H2 ⊕ . . .

Multiplication: disjoint union of graphs;

Comultiplication: splitting the vertex set into two subsets.

The primitive space P(Hn) is of dimension 1 and spanned by a

single vertex of weight n.

The bialgebra H has a one-dimensional primitive space in each

grading and thus is isomorphic to C[q1, q2, . . . ].
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Weighted chromatic polynomial.

The image of an ordinary graph G (considered as a weighted

graph with weights of all vertices equal to 1) in H can be

represented by a polynomial WG(q1, q2, . . . ) in the variables qn.

S. Noble, D. Welsh, A weighted graph polynomial from

chromatic invariants of knots, Annales de l’institut Fourier 49(3)

1057–1087 (1999):

(−1)|V (G)|WG

∣∣∣
qj=−pj

= XG(p1, p2, ...).

Examples. W = (• •) + •
2

= q2
1 + q2

W = ( ) +
2

= ( ) + 2( • •
2
) + ( •

3
)

= q3
1 + 2q1q2 + q3
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Kadomtsev–Petviashvili (KP) hierarchy.

The KP hierarchy is an infinite system of nonlinear partial

differential equations for a function F (p1, p2, . . . ) of infinitely

many variables.

∂2F

∂p2
2

=
∂2F

∂p1∂p3
−

1

2

(∂2F

∂p2
1

)2
−

1

12

∂4F

∂p4
1

∂2F

∂p2∂p3
=

∂2F

∂p1∂p4
−

∂2F

∂p2
1

·
∂2F

∂p1∂p2
−

1

6

∂4F

∂p3
1∂p2

.

The left hand side of the equations correspond to partitions of

n ≥ 4 into two parts none of which is 1, while the terms on the

right hand sides correspond to partitions of the same number n

involving parts equal to 1. The first two equations above

correspond to partitions of 4 and 5. For n = 6, there are two

equations, which correspond to the partitions 2 + 4 = 6 and

3 + 3 = 6, and so on.
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Generating function of weighted chromatic polynomial.

S. Chmutov, M. Kazarian, S. Lando, Polynomial graph

invariants and the KP hierarchy, arXiv:1803.09800

W(q1, q2, . . . ) :=
∑

G connected
non-empty

WG(q1, q2, . . . )

|Aut(G)|

= 1
1!q1 +

1
2!

(
q2

1 + q2

)
+ 1

3!

(
4q3

1 + 9q1q2 + 5q3

)

+ 1
4!

(
38q4

1 + 144q2
1q2 + 45q2

2 + 140q1q3 + 79q4

)
+ . . . ,

Theorem. F (p1, p2, . . . ) := W(α1p1, α2p2, α3p3, α4p4, . . . ) is a

solution of the KP hierarchy of PDEs,

where αn = 2n(n−1)/2(n−1)!
cn

and c1 = 1, c2 = 1, c3 = 5, c4 = 79,

c5 = 3377, . . . is the [A134531] sequence from Sloane’s

Encyclopedia of Integer Sequences.
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