Stanley's chromatic symmetric function

Sergei Chmutov

Ohio State University, Mansfield

OSU-Marion, MIGHTY LXII

Saturday, October 19, 2019
2:00-2:50

Overview.

Stanley's chromatic symmetric function.

R. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Advances in Math. 111(1) 166-194 (1995).

$$
X_{G}\left(x_{1}, x_{2}, \ldots\right):=\sum_{\substack{\kappa: V(G) \rightarrow \mathbb{N} \\ \text { proper }}} \prod_{v \in V(G)} x_{\kappa(v)}
$$

Power function basis. $\quad p_{m}:=\sum_{i=1}^{\infty} x_{i}^{m}$.
Example.

$$
\begin{aligned}
X_{\bullet}^{\bullet}= & \widehat{x_{1} x_{1}}+x_{1} x_{2}+x_{1} x_{3}+\ldots \\
& x_{2} x_{1}+\widehat{x_{2} x_{2}}+x_{2} x_{3}+\ldots \\
& x_{3} x_{1}+x_{3} x_{2}+\widehat{x_{3} x_{3}}+\ldots \\
= & \vdots \\
\vdots & \ddots \\
= & p_{1}^{2}-p_{2}
\end{aligned}
$$

Chromatic symmetric function in power basis.

James Enouen, Eric Fawcett, Rushil Raghavan, Ishaan Shah: Su'18

$$
\begin{aligned}
X_{G}\left(x_{1}, x_{2}, \ldots\right) & =\sum_{\substack{\kappa: V(G) \rightarrow \mathbb{N} \\
\text { all }}} \prod_{v \in V(G)} x_{\kappa(v)} \prod_{\substack{e=\left(v_{1}, v_{2}\right) \in E(G)}}\left(1-\delta_{\kappa\left(v_{1}\right), \kappa\left(v_{2}\right)}\right) \\
& =\sum_{\substack{\kappa: V(G) \rightarrow \mathbb{N} \\
\text { all }}} \prod_{v \in V(G)} x_{\kappa(v)} \sum_{S \subseteq E_{G}}(-1)^{|S|} \prod_{e \in S} \delta_{\kappa\left(v_{1}\right), \kappa\left(v_{2}\right)}
\end{aligned}
$$

$$
\prod_{e \in S} \delta_{\kappa\left(v_{1}\right), \kappa\left(v_{2}\right)}= \begin{cases}1 & \begin{array}{l}
\text { all vertices of a connected component of the spanning sub- } \\
\text { graph with } S \text { edges are colored by } \kappa \text { into the same color }
\end{array} \\
0 & \text { otherwise }\end{cases}
$$

$$
X_{G}=\sum_{S \subseteq E_{G}}(-1)^{|S|} p_{\lambda(S)} \text {, where } \lambda(S) \vdash|V(G)| \text { is a partition of }
$$

the number of verticies according to the connected components of the spanning subgraph S, and for $\lambda(S)=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$, $p_{\lambda(S)}:=p_{\lambda_{1}} p_{\lambda_{2}} \ldots p_{\lambda_{k}}$.

Chromatic symmetric function. Examples.

$$
X_{G}=\sum_{S \subseteq E_{G}}(-1)^{|S|} p_{\lambda_{1}} p_{\lambda_{2}} \ldots p_{\lambda_{k}}
$$

Examples. $X_{\bullet}{ }_{\bullet}=p_{1}^{2}-p_{2}$,

$$
\begin{aligned}
& X_{\bullet} \ldots=p_{1}^{3}-2 p_{1} p_{2}+p_{3}, \quad{ }_{X} \underset{\sim}{ }=p_{1}^{3}-3 p_{1} p_{2}+2 p_{3} . \\
& x \bullet \longrightarrow=p_{1}^{4}-3 p_{1}^{2} p_{2}+p_{2}^{2}+2 p_{1} p_{3}-p_{4}, \\
& x_{\bullet} _p_{1}^{4}-3 p_{1}^{2} p_{2}+3 p_{1} p_{3}-p_{4} .
\end{aligned}
$$

Two graphs with the same chromatic symmetric function:

Chromatic symmetric function. Conjectures.

Tree conjecture.
X_{G} distingushes trees.

A $(3+1)$ poset is the disjoint union of a 3 -element chain and 1 -element chain.
A poset P is $(3+1)$-free if it contains no induced (3+1) posets. Incomparability graph inc (P) of P : vertices are elements of P;
$(u v)$ is an edge if neither $u \leqslant v$ nor $v \leqslant u$.
e-positivity conjecture.
The expansion of $X_{\text {inc }(P)}$ in terms of elementary symmetric functions has positive coefficients for (3+1)-free posets P.

Vassiliev knot invariants.

A knot $K=$ C 人nn, let $\mathcal{K} \ni K$ be a set of all knots.

A knot invariant $v: \mathcal{K} \rightarrow \mathbb{C}$.

Definition.

A knot invariant is said to be a Vassiliev invariant of order (or degree) $\leqslant n$ if its extension to the knots with double points according to the rule

vanishes on all singular knots with more than n double points.

Vassiliev knot invariants. Chord diagrams.

The value of v on a singular knot K with n double points does not depend on the specific knotedness of K. It depends only on the combinatorial arrangement of double points along the knot, which can be encoded by a chord diagram of K.

Algebra of chord diagrams.
\mathcal{A}_{n} is a \mathbb{C}-vector space spanned by chord diagrams modulo four term relations:

Vassiliev knot invariants. Bialgebra of chord diagrams.

The vector space $\mathcal{A}:=\underset{n \geq 0}{\bigoplus} \mathcal{A}_{n}$ has a natural bialgebra structure.
Multiplication:

Comultiplication: $\quad \delta: \mathcal{A}_{n} \rightarrow \underset{k+l=n}{\bigoplus} \mathcal{A}_{k} \otimes \mathcal{A}_{l}$ is defined on chord diagrams by the sum of all ways to split the set of chords into two disjoint parts: $\quad \delta(D):=\sum_{J \subseteq[D]} D_{J} \otimes D_{\bar{J}}$.

Primitive space $\mathcal{P}(\mathcal{A})$ is the space of elements $D \in \mathcal{A}$ with the property $\delta(D)=1 \otimes D+D \otimes 1$. $\mathcal{P}(\mathcal{A})$ is also a graded vector space $\mathcal{P}(\mathcal{A})=\underset{n \geq 1}{\bigoplus} \mathcal{P}_{n}$.

Vassiliev knot invariants. Structure of the bialgebra.

The classical Milnor-Moore theorem: any commutative and cocommutative bialgebra \mathcal{A} is isomorphic to the symmetric tensor algebra of the primitive space, $\mathcal{A} \cong \mathcal{S}(\mathcal{P}(\mathcal{A}))$.

Let p_{1}, p_{2}, \ldots be a basis for the primitive space $\mathcal{P}(\mathcal{A})$ then any element of \mathcal{A} can be uniquely represented as a polynomial in commuting variables p_{1}, p_{2}, \ldots
The dimensions of \mathcal{P}_{n} :

n	1	2	3	4	5	6	7	8	9	10	11	12
$\operatorname{dim} \mathcal{P}_{n}$	1	1	1	2	3	5	8	12	18	27	39	55

Vassiliev knot invariants. Weighted graphs.

S. Chmutov, S. Duzhin, S. Lando, Vassiliev knot invariants III. Forest algebra and weighted graphs, Advances in Soviet Mathematics 21 135-145 (1994).

A chord diagram

The intersection graph

Definition. A weighted graph is a graph G without loops and multiple edges given together with a weight $w: V(G) \rightarrow \mathbb{N}$ that assigns a positive integer to each vertex of the graph. Ordinary simple graphs can be treated as weighted graphs with the weights of all vertices equal to 1 .

Bialgebra of weighted graphs.

Let \mathcal{H}_{n} be a vector space spanned by all weighted graphs of the total weight n modulo the weighted contraction/deletion relation $G=(G \backslash e)+(G / e)$, where the graph $G \backslash e$ is obtained from G by removing the edge e and G / e is obtained from G by a contraction of e such that if a multiple edge arises, it is reduced to a single edge and the weight $w(v)$ of the new vertex v is set up to be equal to the sum of the weights of the two ends of the edge e.

$$
\mathcal{H}:=\mathcal{H}_{0} \oplus \mathcal{H}_{1} \oplus \mathcal{H}_{2} \oplus \ldots
$$

Multiplication:
Comultiplication: The primitive space $P\left(\mathcal{H}_{n}\right)$ is of dimension 1 and spanned by a single vertex of weight n.
The bialgebra \mathcal{H} has a one-dimensional primitive space in each grading and thus is isomorphic to $\mathbb{C}\left[q_{1}, q_{2}, \ldots\right]$.

Weighted chromatic polynomial.

The image of an ordinary graph G (considered as a weighted graph with weights of all vertices equal to 1) in \mathcal{H} can be represented by a polynomial $W_{G}\left(q_{1}, q_{2}, \ldots\right)$ in the variables q_{n}.
S. Noble, D. Welsh, A weighted graph polynomial from chromatic invariants of knots, Annales de l'institut Fourier 49(3) 1057-1087 (1999):

$$
\left.(-1)^{|V(G)|} W_{G}\right|_{q_{j}=-p_{j}}=X_{G}\left(p_{1}, p_{2}, \ldots\right) .
$$

Examples. $W_{\bullet} \longrightarrow(\bullet \bullet)+\underset{2}{\bullet}=q_{1}^{2}+q_{2}$

$$
\begin{aligned}
W \bullet \bullet & =(\bullet \bullet)+\stackrel{\bullet}{2}=(\bullet \bullet \bullet)+2(\bullet \bullet)+(\stackrel{\bullet}{3}) \\
& =q_{1}^{3}+2 q_{1} q_{2}+q_{3}
\end{aligned}
$$

Kadomtsev-Petviashvili (KP) hierarchy.

The KP hierarchy is an infinite system of nonlinear partial differential equations for a function $F\left(p_{1}, p_{2}, \ldots\right)$ of infinitely many variables.

$$
\begin{aligned}
\frac{\partial^{2} F}{\partial p_{2}^{2}} & =\frac{\partial^{2} F}{\partial p_{1} \partial p_{3}}-\frac{1}{2}\left(\frac{\partial^{2} F}{\partial p_{1}^{2}}\right)^{2}-\frac{1}{12} \frac{\partial^{4} F}{\partial p_{1}^{4}} \\
\frac{\partial^{2} F}{\partial p_{2} \partial p_{3}} & =\frac{\partial^{2} F}{\partial p_{1} \partial p_{4}}-\frac{\partial^{2} F}{\partial p_{1}^{2}} \cdot \frac{\partial^{2} F}{\partial p_{1} \partial p_{2}}-\frac{1}{6} \frac{\partial^{4} F}{\partial p_{1}^{3} \partial p_{2}} .
\end{aligned}
$$

The left hand side of the equations correspond to partitions of $n \geq 4$ into two parts none of which is 1 , while the terms on the right hand sides correspond to partitions of the same number n involving parts equal to 1 . The first two equations above correspond to partitions of 4 and 5 . For $n=6$, there are two equations, which correspond to the partitions $2+4=6$ and $3+3=6$, and so on.

Generating function of weighted chromatic polynomial.

S. Chmutov, M. Kazarian, S. Lando, Polynomial graph invariants and the KP hierarchy, arXiv:1803.09800

$$
\begin{aligned}
& \mathcal{W}\left(q_{1}, q_{2}, \ldots\right):=\sum_{\substack{G \text { comnected } \\
\text { nonompiy }}} \frac{W_{G}\left(q_{1}, q_{2}, \ldots\right)}{|\operatorname{Aut}(G)|} \\
&= \frac{1}{\pi!} q_{1}+\frac{1}{2!}\left(q_{1}^{2}+q_{2}\right)+\frac{1}{3!}\left(4 q_{1}^{3}+9 q_{1} q_{2}+5 q_{3}\right) \\
&+\frac{1}{4!}\left(38 q_{1}^{4}+144 q_{1}^{2} q_{2}+45 q_{2}^{2}+140 q_{1} q_{3}+79 q_{4}\right)+\ldots,
\end{aligned}
$$

Theorem. $\mathcal{F}\left(p_{1}, p_{2}, \ldots\right):=\mathcal{W}\left(\alpha_{1} p_{1}, \alpha_{2} p_{2}, \alpha_{3} p_{3}, \alpha_{4} p_{4}, \ldots\right)$ is a solution of the $K P$ hierarchy of PDEs, where $\alpha_{n}=\frac{2^{n(n-1) / 2}(n-1)!}{c_{n}}$ and $c_{1}=1, c_{2}=1, c_{3}=5, c_{4}=79$, $c_{5}=3377, \ldots$ is the [A134531] sequence from Sloane's Encyclopedia of Integer Sequences.

