On the Gross-Mansour-Tucker conjecture

Sergei Chmutov

Ohio State University, Mansfield

Joint work with Fabien Vignes-Tourneret

arXiv:2101.09319v1 [math.CO]

8th European Congress of Mathematics Minisymposium: Graphs, Polynomials, Surfaces, and Knots (MS - ID 49)

Monday, June 21, 2021

Ribbon graphs.

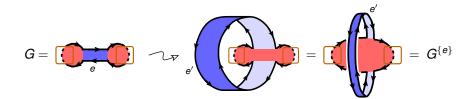
Definition. A *ribbon graph G* is a surface with boundary represented as the union of two sets of closed topological discs called *vertex-discs* V(G) and *edge-ribbons* E(G), satisfying the following conditions:

- the vertex-discs and edge-ribbons intersect by disjoint line segments;
- each such line segment lies on the boundary of precisely one vertex-disc and precisely one edge-ribbon;
- every edge-ribbon contains exactly two such line segments.

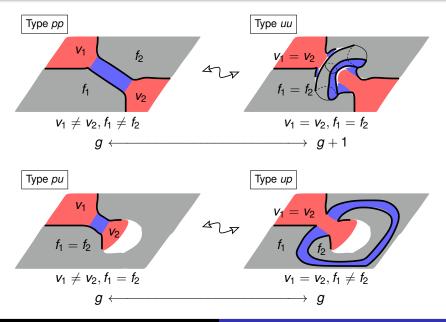
Example.

$$\Box_{\nabla} = G, \quad \Sigma_G =$$

Partial duality of ribbon graphs.



Partial duality of ribbon graphs.



Sergei Chmutov On the Gross-Mansour-Tucker conjecture

J. L. Gross, T. Mansour, T. W. Tucker, *Partial duality for ribbon graphs, I: Distributions*, European Journal of Combinatorics **86** (2020) 103084, 1–20.

GMT-conjecture. For any ribbon graph there is a subset of edges partial duality relative to which changes the genus.

The *ribbon-join* (I. Moffatt) $G_1 \vee G_2$ is obtained by gluing together a vertex-disc of G_1 and a vertex-disc of G_2 along some arcs on their boundaries.

$$B_1 = \bigcirc, B_2 = \bigcirc, B_3 = \bigcirc, B_4 = \bigcirc, B_5 = \bigcirc, \ldots$$

Q. Yan, X. Jin, *Counterexamples to a conjecture by Gross, Mansour, and Tucker on partial-dual genus polynomials of ribbon graphs,* European Journal of Combinatorics **93** (2021) 103285. Paper ID 103285. Preprint arXiv:2004.12564v1 [math.co] 27 Apr 2020.

Theorem. The genus of any partial dual to B_{2n+1} is equal to *n*.

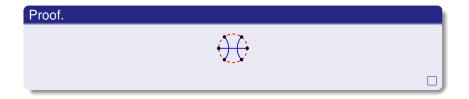
Definition. A connected ribbon graph *G join-prime* if it cannot be represented as the ribbon-join of two graphs G_1 , G_2 with at least one edge-ribbon each: $G \neq G_1 \lor G_2$.

-, F. Vignes-Tourneret, *On a conjecture of Gross, Mansour and Tucker*, Preprint arXiv:2101.09319v1 [math.CO] 22 Jan 2021. To apper in European Journal of Combinatorics.

Theorem. For any join-prime ribbon graph different from partial duals of B_{2n+1} , there are partial duals of different genus.

Lemma. Let G be a one-vertex join-prime ribbon graph and $e \in E(G)$. Suppose that the genus of partial duals of G stay the same, $g(G) = g(G^A)$ for all subsets $A \subseteq E(G)$. Then

- e is attached to different face-discs f₁ ≠ f₂. That is e has to be of Type up.
- Any edge-ribbon interlaced with e is attached to the same face-discs f₁ and f₂.
- Any edge-ribbon not interlaced with e is attached to a pair of face-discs different from {f₁, f₂}.



The non-orientable counterpart of the GMT conjecture.

- Maya Thompson (Royal Holloway University of London).
- Q. Yan, X. Jin, *Partial-dual genus polynomials and signed intersection graphs*, Preprint arXiv:2102.01823v1 [math.CO] **3 Feb 2021**.

The only non-orientable join-prime ribbon graph whose partial duals have the same Euler genus is the one-vertex ribbon graph with one twisted edge.

THANK YOU!!!

Sergei Chmutov On the Gross-Mansour-Tucker conjecture