Thompson's group links

Sergei Chmutov

The Ohio State University, Mansfield

R.Fenn — L.Kauffman seminar

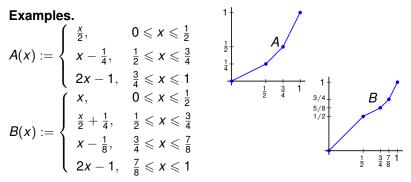
Tuesday, May 18, 2021

Sergei Chmutov Thompson's group links

Introduced by Richard Thompson in 1965.

Definition. Elements of F are piecewise linear homeomorphisms of [0, 1] to itself satisfying the conditions

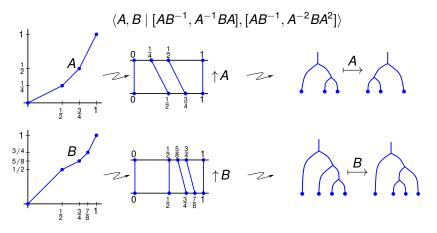
- linear except at finitely many dyadic rational numbers;
- fixing 0 and 1;
- on intervals of linearity the derivatives are powers of 2.



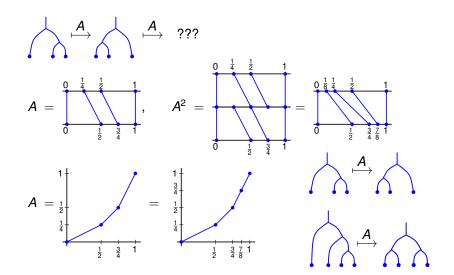
Thompson's group *F*. Combinatorics.

J. W. Cannon, W. J. Floyd, W. R. Parry, *Introductory notes on Richard Thompson's groups*, L'Enseignement Mathématique **42** (1996) 215–256.

Theorem. *F* has the finite presentation

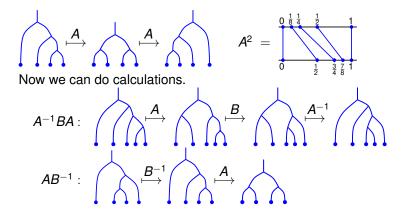


Thompson's group F. Calculations.

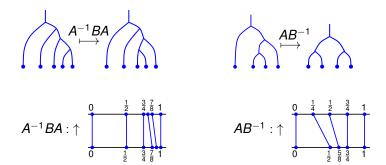


Thompson's group *F*. Calculations.

Adding a *caret*, \bigcap , to the corresponding vertices of both trees does not change the element of the Thompson group.



Thompson's group *F*. Calculations.

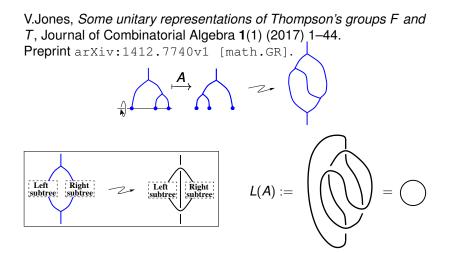


 $[AB^{-1}, A^{-1}BA] = 1$

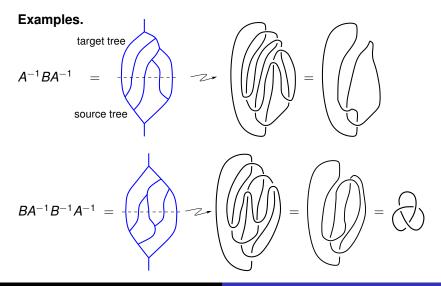
Thompson's group F. Properties.

- **Open problem:** Is *F* amenable?
- It was used to construct finitely-presented groups with unsolvable word problems.
- *F* does not contain a free group of rank greater than one.
- $F/[F,F] \cong \mathbb{Z} \oplus \mathbb{Z}$
- Every proper quotient group of *F* is Abelian.
- The commutator subgroup [F, F] of F is a simple group.
- F has exponential growth.
- Every non-Abelian subgroup of *F* contains a free Abelian subgroup of infinite rank.
- *F* is a totally ordered group.

Jones' construction of links from elements of *F*.



Thompson's group links.

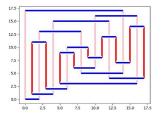


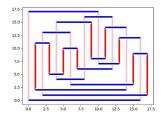
Jones' theorem.

V. F. R. Jones, On the construction of knots and links from Thompson's groups, in Knots, low-dimensional topology and applications, Springer Proc. Math. Stat. **284**, Springer (2019) 43–66. Preprint arXiv:1810.06034v1 [math.GT]. **Theorem.** For any link diagram D there is an element $g \in F$, such that the diagram L(g) is isotopic to D.

$L(g) = L(g^{-1})$ Dennis Sweeney: Borromean rings

https://github.com/sweeneyde/thompson_knots





Left

subtree

Right

subtree

V. Jones: "Since the proof of the realization of all links as L(g) actually uses a lot of type I Reidemeister moves, one may ask whether all *regular isotopy* classes of link diagrams actually arise as L(g)."

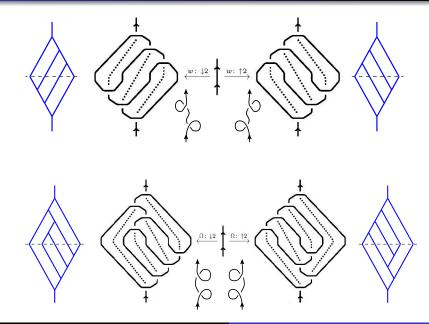
R. Raghavan, D. Sweeney, *Regular Isotopy Classes* of Link Diagrams From Thompson's Groups. Preprint arXiv:2008.11052 [math.GT]

Theorem. A link diagram D is regular isotopic to L(g) for some $g \in F$ iff every component of D underpasses even number of times.

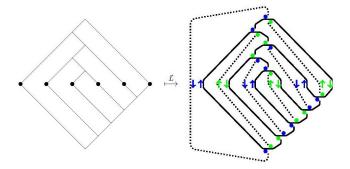
A. Coward. Ordering the Reidemeister moves of a classical knot, Algebraic & Geometric Topology, **6**(2) (2006) 659–671.

Theorem. Two isotopic oriented link diagrams are regularly isotopic iff the Whitney rotation numbers and the writhes the corresponding components coincide.

Idea of proof.



Definition. The *oriented Thompson group* $\overrightarrow{F} \subset F$ is the subgroup of elements $g \in F$ for which the Tait graph of the checkerboard-shading of L(g) is bipartite.

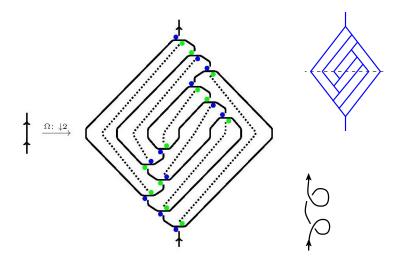


V. Aiello, On the Alexander theorem for the oriented Thompson group \overrightarrow{F} , Algebraic & Geometric Topology, **20** (2020) 429–438. Preprint arXiv:1811.08323v3 [math.GT].

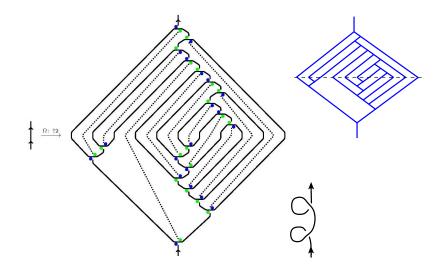
Theorem. Given an oriented link diagram D, there is an element $g \in \overrightarrow{F}$ such that $\overrightarrow{L}(g)$ is isotopic to D.

Theorem [R. Raghavan, D. Sweeney]. An oriented link diagram *D* is regular isotopic to $\overrightarrow{L}(g)$ for some $g \in \overrightarrow{F}$ iff for each component of *D* the sum of the writhes of all crossings where the component goes under is equal to zero.

Idea of proof. Whitney down.



Idea of proof. Whitney up.



THANK YOU!!!

Sergei Chmutov Thompson's group links