Twist polynomial for delta-matroids

Sergei Chmutov

Ohio State University, Mansfield

AMS Special Session on Topology, Structure and Symmetry in Graph Theory

Wednesday, January 4, 2023

Matroids	Δ -matroids [A. Bouchet, 1987]
A matroid is a pair $M = (E, B)$ consisting of a finite set E and a nonempty collection B of its sub- sets, called <i>bases</i> , satisfying the axioms:	$A \Delta$ -matroid is a pair $M = (E; \mathcal{F})$ consisting of a finite set E and a nonempty collection \mathcal{F} of its sub- sets, called <i>feasible sets</i> , satisfy- ing the
(B1) No proper subset of a base is a base.	Symmetric Exchange axiom If F_1 and F_2 are two feasible sets and $f_1 \in F_1 \Delta F_2$, then there is an element $f_2 \in F_1 \Delta F_2$ such that $F_1 \Delta \{f_1, f_2\}$ is a feasible set.
(B2) (Exchange axiom) If B_1 and B_2 are bases and $b_1 \in B_1 - B_2$, then there is an element $b_2 \in B_2 - B_1$ such that $(B_1 - b_1) \cup b_2$ is a base.	

A *quasi-tree* is ribbon graph \mathbb{G} with a single boundary component.

Theorem. Let $\mathbb{G} = (V, E)$ be a ribbon graph. Then

 $D(\mathbb{G}) := (E; \{spanning quasi-trees\})$

is a Δ -matroid.

Let *C* be a symmetric $|E| \times |E|$ matrix over \mathbb{F}_2 , with rows and columns indexed by the elements of *E*.

Theorem.

$$D(C) := (E; \{F \subseteq E | C[F] \text{ is non-singular}\})$$

is a Δ -matroid.

Example. Let $C := A_G$ be the adjacency matrix of an abstract graph *G* and *E* is the set of its vertices.

If $G = K_n$ is the complete graph with *n* vertices, then the feasible sets of the corresponding Δ -matroid $D_n := D(A_{K_n})$ and all subsets of *E* of even cardinality. $D_3 = (\{1, 2, 3\}; \{\emptyset, \{1, 2\}, \{1, 3\}, \{2, 3\}\})$

If *G* is a graph od a single vertex and a single loop attached to it, then its matroid is $N_1 := D(A_G) = (\{1\}; \{\emptyset, \{1\}\})$. The corresponding ribbon graph \mathbb{G} consist of a sinle vertex and a single loop-ribbon half-twisted.

Let $D = (E; \mathcal{F})$ be a Δ -matroid and $e \in E$. *e* is a *loop* iff $\forall F \in \mathcal{F}, e \notin F$. *e* is a *coloop* iff $\forall F \in \mathcal{F}, e \in F$.

If e is not a loop, $D/e := (E \setminus \{e\}; \{F \setminus \{e\} | F \in \mathcal{F}, e \in F\}).$

If e is not a coloop, $D \setminus e := (E \setminus \{e\}; \{F | F \in \mathcal{F}, F \subset E \setminus \{e\}\}).$

Twists of Δ **-matroids.** Let $D = (E; \mathcal{F})$ be a Δ -matroids and $A \subseteq E$.

$$D * A := (E; \{F \Delta A | F \in \mathcal{F}\}).$$

Dual \triangle -matroid: $D^* := D * E$.

Theorem. $D(\mathbb{G}) * A = D(\mathbb{G}^A)$.

A Δ -matroid is binary if it is a twist of a representative (over \mathbb{F}_2) Δ -matroid.

Let $D = (E, \mathcal{F})$ be a Δ -matroid. $D_{min} := (E, \mathcal{F}_{min})$, where $\mathcal{F}_{min} := \{F \in \mathcal{F} | F \text{ is of minimal possible cardinality}\}$.

 $D_{max} := (E, \mathcal{F}_{max})$, where $\mathcal{F}_{max} := \{F \in \mathcal{F} | F \text{ is of maximal possible cardinality} \}$.

Properties.

• D_{min} and D_{max} are matroids. Width $w(D) := r(D_{max}) - r(D_{min})$

- $(D(\mathbb{G}))_{min} = \mathcal{C}(\mathbb{G}).$ $(D(\mathbb{G}))_{max} = (\mathcal{C}(\mathbb{G}^*))^*.$
- $D(\mathbb{G}) = \mathcal{C}(\mathbb{G})$ iff \mathbb{G} is a planar ribbon graph.

The twist polynomial of a delta-matroid $D = (E, \mathcal{F})$ is the generating function for the width of all twists of D,

$${}^{\partial} w_D(z) := \sum_{A \subseteq E} z^{w(D*A)}$$

J. L. Gross, T. Mansour, T. W. Tucker, *Partial duality for ribbon graphs, I: Distributions*, European Journal of Combinatorics **86** (2020) 103084, 1–20: **GMT-conjecture**. For any ribbon graph there is a subset of edges partial duality relative to which changes the genus.

Q. Yan, X. Jin, *Counterexamples to a conjecture by Gross, Mansour, and Tucker on partial-dual genus polynomials of ribbon graphs*, European Journal of Combinatorics **93** (2021) 103285:

Theorem. The genus of any partial dual to B_{2n+1} is equal to n. $D(B_{2n+1}) = D_{2n+1}$. In particular, ${}^{\partial}w_{D_{2n+1}}(z) = 2^{2n+1}z^{2n}$.

—, F. Vignes-Tourneret, On a conjecture of Gross, Mansour and Tucker, European Journal of Combinatorics **97**(3) (2021) 103368: **Theorem.** For any join-prime ribbon graph different from partial duals of B_{2n+1} ,

there are partial duals of different genus.

Independent proofs and non-orientable case:

- Maya Thompson (Royal Holloway University of London).
- Q. Yan, X. Jin, *Partial-dual genus polynomials and signed intersection graphs*, Forum of Mathematics, Sigma **10** (2022) 1–16.

Q. Yan, X. Jin, *Twist monomials of binary delta-matroids*. Preprint arXiv:2205.03487v1 [math.CO]:
Theorem. A normal binary delta-matroid has a twist monomial iff each connected component of its corresponding looped simple graph is either a complete graph of odd order or a single vertex with a loop.

IF	Number of twist nonequivalent	Number of twist nonequivalent
14	binary Δ -matroids on E	Δ -matroids on <i>E</i>
2	5	5
3	13	16
4	40	90
5	141	2902

D. Yuschak, *Delta-matroids with twist monomials*. Preprint arXiv:2208.13258v1 [math.CO] 28 Aug 2022:

Theorem. If a \triangle -matroid has a twist monomial, then it is binary.

Thus the only Δ -matroids with twist monomials are

$$D_{2n_1+1} \oplus \cdots \oplus D_{2n_k+1} \oplus N_1 \oplus \cdots \oplus N_1$$

A. Bouchet, A. Duchamp, *Representability of* Δ *-matroids over GF*(2), Linear Algebra Appl. **146** (1991) 67–78:

Theorem. A Δ -matroid is binary iff it has no minor isomorphic to one of the following delta-matroids:

 $\begin{array}{l} 1. \left(\{1,2,3\}, \{\emptyset,\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}\right)\\ 2. \left(\{1,2,3\}, \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\}\right)\\ 3. \left(\{1,2,3\}, \{\emptyset,\{2\},\{3\},\{1,2\},\{1,3\},\{1,2,3\}\}\right)\\ 4. \left(\{1,2,3,4\}, \{\emptyset,\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}\right)\\ 5. \left(\{1,2,3,4\}, \{\emptyset,\{1,2\},\{1,4\},\{2,3\},\{3,4\},\{1,2,3,4\}\}\right)\end{array}$

THANK YOU!!!

Sergei Chmutov Twist polynomial for delta-matroids