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Chord diagrams

A chord diagram of order n (or degree n) is an oriented circle with a
distinguished set of n disjoint pairs of distinct points, considered up to
orientation preserving homeomorphisms of the circle.
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Four-term relation for chord diagrams:

− + − = 0. (4T)

An := SpC⟨chord diagrams with n chords⟩/(4T )
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Hopf algebra of chord diagrams and weight systems

A :=
∞⊕

n=0
An is a (graded, commutative, and cocommutative) Hopf algebra

with multiplication: · = =

and comultiplication:

∆
( )

= ⊗ + 2 ⊗ + ⊗

+ ⊗ + 2 ⊗ + ⊗

A weight system of order n is a function on An satisfying (4T): Wn := A∗
n.

W :=
∞⊕

n=0
Wn with multiplication: (w1 · w2)(D) := (w1 ⊗ w2)(∆(D)).
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Examples: Unit weight system and glN

The unit weight system I is the weight system that is equal to 1 on every
chord diagram. In is the function on chord diagrams which is equal to 1 on any
diagram of degree n and 0 on chord diagrams of all other degrees.

In · Im =

(
m + n

n

)
In+m , In =

In1
n!
, I =

∞∑
n=0

In =
∞∑

n=0

1
n!

In1 = eI1

M. Kontsevich, D. Bar-Natan: glN with standard representation.
φglN (D) = N f (D), where f (D) is the number of connected components of the
curve obtained by doubling all chords of a chord diagram D.

. φglN

( )
= N2.
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Ribbon graphs

A ribbon graph is a surface with boundary decomposed into a number of
closed topological discs of two types: vertex-discs and edge-ribbons,
satisfying the conditions: the discs of the same type are pairwise disjoint; the
vertex-discs and the edge-ribbons intersect by disjoint line segments, each
such line segment lies on the boundary of precisely one vertex and precisely
one edge, and every edge contains exactly two such line segments, which are
not adjacent.

(a) (b)

(c)

=
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Partial duality

G =
e e′

=

e′

= G{e}

G(c) =

e

e′ = G{e}
(c) ,

J. L. Gross, T. Mansour, and T. W. Tucker: Partial-dual genus polynomial.

∂ΓG(z) :=
∑

A⊆E(G)

zg(GA)

∂ΓG(c)
(z) = 2 + 6z.
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The Bollobás–Riordan polynomial

BG(X ,Y ,Z ) =
∑

A⊆E(G)

X k(A)−k(G)Y n(A)Z k(A)−f (A)+n(A),

where

k(A) be the number oA components of A;

n(A) := e(A)− v(A) + k(A) be the nullity of A;

f (A) be the number of boundary components of A.

G(c) = BG(c)
(X ,Y ,Z ) = 1 + 3Y + 2Y 2Z 2 + Y 2 + Y 3Z 2
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Chord diagrams as ribbon graphs

D = GD =

Any function (polynomial valued)
on ribbon graphs becomes a func-
tion on chord diagrams. Which of
them are weight systems?

• The partial-dual genus polynomial, ∂ΓGD (z), is a weight system (S.Ch.
Partial-dual genus polynomial as a weight system, Communications in
Mathematics, 31(3) (2023) 113–124).

• The Bollobás–Riordan polynomial, BGD , is a weight system.

BGD (X ,Y ,Z ) = Z
(

I · (YZ )deg DφglN

)
(D)

∣∣∣
N=Z−1
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Harer-Zagier formula

Tn(N) :=
∑
D

based chord
diagram with

n chords

N f (D)

=
∑
φglN (D)

T (N, s) := 1 + 2Ns

+2s
∞∑

n=1

Tn(N)
(2n−1)!!s

n

=

(
1 + s
1 − s

)N

Are there any nice formulas for the generating functions of sum of values of
other weight systems?
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Iain Moffatt’s theorem
British Combinatorial Conference, 2024.
Theorem. Consider a weight system

ψ(D) := z1+deg DφglN (D)
∣∣∣
N=z−1

Then ∂ΓGD (z
2) = ψ2(D).

Proof.
2g(GA) = 2 −

(
v(GA)− e(G) + f (GA)

)
= 2 + e(G)−

(
v(GA) + f (GA)

)
But f (GA) = f (Ac) and v(GA) = f (GAc

) = f (A)
So 2g(GA) = 2 + e(G)− (f (A) + f (Ac))
And

∂ΓGD (z
2) =

∑
A⊆E(G)

z2g(GA
D) = z2+deg D ·

∑
A⊆E(G)

z−f (A)−f (Ac) = ψ2(D)
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