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Chord diagrams

A chord diagram of order n (or degree n) is an oriented circle with a
distinguished set of n disjoint pairs of distinct points, considered up to
orientation preserving homeomorphisms of the circle.
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Four-term relation for chord diagrams:
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Ap = Spc(chord diagrams with n chords)/(4T)
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Hopf algebra of chord diagrams and weight systems

A= EBA,, is a (graded, commutative, and cocommutative) Hopf algebra
n=0

with multiplication: @ @ % @
and comultiplication:
A(@) = O®@+2@®®+@®®
+@®O+2®®@+®®@

A weight system of order nis a function on 4, satisfying (4T): W, := A}.

W= 69 W, with multiplication: (wy - w»)(D) := (w1 ® wa)(A(D)).

n=0
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Examples: Unit weight system and gl

The unit weight system | is the weight system that is equal to 1 on every
chord diagram. 1, is the function on chord diagrams which is equal to 1 on any
diagram of degree n and 0 on chord diagrams of all other degrees.

In

m+n > =1,
1
I,,-Im:< n >|n+m, |n:my |:§ E F1—e
I —~ = nl

M. Kontsevich, D. Bar-Natan: gl with standard representation.
¢g1, (D) = NO), where f(D) is the number of connected components of the
curve obtained by doubling all chords of a chord diagram D.
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Ribbon graphs

A ribbon graph is a surface with boundary decomposed into a number of
closed topological discs of two types: vertex-discs and edge-ribbons,
satisfying the conditions: the discs of the same type are pairwise disjoint; the
vertex-discs and the edge-ribbons intersect by disjoint line segments, each
such line segment lies on the boundary of precisely one vertex and precisely
one edge, and every edge contains exactly two such line segments, which are
not adjacent.
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Partial duality

o
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J. L. Gross, T. Mansour, and T. W. Tucker: Partial-dual genus polynomial.

Mg(z) = ACXE:(G) 29(G")

a —
FG(C)(Z) =246z
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The Bollobas—Riordan polynomial

Bg(X,Y,Z) = Z XKA)=K(G) yn(A) ZK(A)~H(A)+n(A)
ACE(G

where
@ K(A) be the number oA components of A;
@ n(A) := e(A) — v(A) + k(A) be the nullity of A;
@ f(A) be the number of boundary components of A.

B, (X,Y,Z)=1+3Y +2Y222 4+ Y2 | Y3272

() (
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Chord diagrams as ribbon graphs

o) e o

e The partial-dual genus polynomial, °T'g,(z), is a weight system (S.Ch.
Partial-dual genus polynomial as a weight system, Communications in
Mathematics, 31(3) (2023) 113—124).

Any function (polynomial valued)
on ribbon graphs becomes a func-
tion on chord diagrams. Which of
them are weight systems?

¢ The Bollobas—Riordan polynomial, Bg,, is a weight system.

Be,(X,Y,2Z) = Z(I : (YZ)deg%g[N)(D)\N:Z_1
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Harer-Zagier formula

TA(N) = > NO®
D
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n chords

=2y (D)
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Are there any nice formulas for the generating functions of sum of values of
other weight systems?
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lain Moffatt's theorem

lain Moffatt’s theorem

British Combinatorial Conference, 2024.
Theorem. Consider a weight system

’(/)(D) — Z1+deg D@QIN(D)’N:ZA

Then T g,(2%) = ¥?(D).

Proof.
29(G*)

2 — (v(GA) —e(G)+ f(GA))
2+e(G)— (V(GY + f(GY)

c

But f(G*) = f(A°) and v(G*) = f(G*) = f(A)
S0 2g(G*) = 2 + e(G) — (f(A) + f(A°))

And
arGD(zz): Z 729(Gp) _ 2+degD Z S T(A)—1(A%) _ wZ(D)
ACE(G) ACE(G)
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