
1 Reduced Homologies

Definition 1.1. To define the reduced homologies H̃ i,j (Γ) of a graph Γ, in
each connected component Ki of Γ we select a vertex vi and consider only
those enhanced states in which vi are colored X. d is defined on this set
and is still a graded differential. We define H i,j (Γ) to be the usual i, j-th
homology with respect to d, and H̃ i,j (Γ) = H i,j (Γ) {−1}, the homologies
shifted one degree down.

We will denote the reduced chain complexes by C̃i,j or C̃i.

Remark 1.2. Reduced homologies are independent of the ordering on edges,
since the isomorphism in [HGR, Theorem 14] works verbatim in this case.

Remark 1.3. The homology groups of the graph are tensor products of the
homology groups of the connected components. Therefore, in all that follows
we consider only connected graphs.

Remark 1.4. The long exact sequence of homology groups also exists for the
reduced homologies, since the differential d commutes with the maps from
the short exact sequence of complexes

0 → C̃i−1 (Γ/e) → C̃i (Γ) → C̃i (Γ− e) → 0,

in the same way as for the non-reduced chain complexes.

Remark 1.5. As in [HGR, Propositions 19, 20], the homology groups of
a graph with a loop are trivial, and the homology groups of a graph with
multiple edges are unchanged if the multiple edges are replaced by single
edges. Hence, in all that follows, the graphs will be simple.

Remark 1.6. If e is a pendant edge of a graph Γ then H̃ i,j (Γ) ≡ H̃ i,j (Γ/e)⊗
R (q). The proof is exactly the same as in [HGR, Theorem 24] since it only
used the long exact sequence of homologies and the fact that 1 is an identity
in the algebra. Note that for a single vertex the reduced homology group is
simply R, so for a tree on n vertices the reduced homology group is R (qn−1).
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2 Properties of Reduced Homologies

Proposition 2.1. H̃ i,j (Γ) = 0 unless i + j = n− 1, where n is the number
of vertices of Γ.

Proof. The proof is by induction on the number of edges.
Base Case. There is only one graph with 0 edges: the one-vertex tree.

The homology of a single vertex is R.
Induction Step. If Γ is a tree, the assertion of the proposition follows from

Remark 1.6. Else, let e be some edge whose removal does not disconnect Γ.
The relevant portion of the long exact sequence is as follows:

. . . → H̃ i−1,j (Γ/e) → H̃ i,j (Γ) → H̃ i,j (Γ− e) → . . .

Since Γ/e and Γ − e have fewer edges than Γ, by the induction hypothesis
H̃ i−1,j (Γ/e) = 0 unless i − 1 + j = (n− 1) − 1 and H̃ i,j (Γ− e) = 0 unless
i + j = n− 1. From exactness, H i,j (Γ) = 0 unless i + j = n− 1.

Proposition 2.2. H̃ i,j (Γ) = H̃ i−1,j (Γ/e)⊕ H̃ i,j (Γ− e).

Proof. Note that unless i + j = n, by Proposition 2.1 all the homologies are
zero. When i + j = n, the relevant segment of the long exact sequence looks
as follows:

0 = H̃ i−1,j (Γ) → H̃ i−1,j (Γ/e) → H̃ i,j (Γ) → H̃ i,j (Γ− e) → H̃ i,j (Γ/e) = 0

By exactness, H̃ i,j (Γ) = H̃ i−1,j (Γ/e)⊕ H̃ i,j (Γ− e).

Proposition 2.3. Reduced homologies H̃ i,j (Γ) are independent of the choice
of special vertex.

Proof. The proof is by induction on the number of edges.
Base Case. If Γ has no edges, then it is the one-vertex graph, and there

is nothing to prove.
Induction Step. For Γ a tree, the proposition follows from remark 1.6,

since the homology groups are the same regardless of vertex choice. Else, let
Γ and Γ′ correspond to the same graph but with different special vertices, v
and v′ respectively. Let e be an edge of Γ (also of Γ′) whose removal does
not disconnect Γ. By Proposition 2.2,

H̃ i (Γ) = H̃ i−1 (Γ/e)⊕ H̃ i (Γ− e)

H̃ i (Γ′) = H̃ i−1 (Γ′/e)⊕ H̃ i (Γ′ − e)
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By inductive hypothesis, H̃ i−1 (Γ/e) ∼= H̃ i−1 (Γ′/e) and H̃ i (Γ− e) ∼= H̃ i (Γ′ − e),
since these represent the same graph but with different special vertices, the
images of v and v′ respectively. Hence, H̃ i (Γ) ∼= H̃ i (Γ′).
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3 Homologies of Union

The motivation for introducing reduced homologies is the following property
of the chromatic polynomial: if Γ is obtained from Γ1 and Γ2 by taking a
vertex v1 ∈ Γ1 and a vertex v2 ∈ Γ2 and glueing them together (Γ = Γ1 ∗Γ2),
then

χΓ (λ) =
χΓ1 (λ) χΓ2 (λ)

λ
.

Introducing the reduced polynomial χ̃Γ (λ) = λ−1χΓ (λ), we get

χ̃Γ (λ) = χ̃Γ1 (λ) χ̃Γ2 (λ) .

We now establish that the reduced homologies form the categorification
of the reduced chromatic polynomial and have this property of the chromatic
polynomial.

Proposition 3.1. The graded Euler characteristic of the reduced chain com-
plex C̃ (G) is equal to the reduced chromatic polynomial χ̃Γ (λ) with λ = 1+q.

Proof. The assertion is easily shown by induction on the number of edges,
since (base case) for a tree on n vertices the reduced chromatic polynomial
is λ−1

(
λ (λ− 1)n−1) = (λ− 1)n−1 = qn−1 and the reduced homology group

is R (qn−1).

Proposition 3.2. If Γ = Γ1 ∗ Γ2, then H̃ (Γ) = H̃ (Γ1)⊗ H̃ (Γ2).

Proof. Since the homology groups are independent of the choice of special
vertex, we may suppose Γ1 and Γ2 are joined by identifying their special
vertices with each other; the resulting vertex is special in the union.

The proof is done by induction on the number of edges of Γ2.
Base Case. If Γ2 has no edges, then it is the single-vertex graph, so

H̃ (Γ) = H̃ (Γ1) (since the graphs are the same), and H̃ (Γ2) = R.
Inductive Step. If Γ2 is a tree with n vertices, H̃ (Γ) is obtained from

H̃ (Γ1) via Proposition 1.6 as H̃ (Γ) = H̃ (Γ1) ⊗ R (qn−1). By the same
proposition, R (qn−1) is the homology of Γ2. If Γ2 is not a tree, let e be an
edge of Γ2 whose removal doesn’t disconnect Γ2. By Proposition 2.2,

H̃ (Γ2) = H̃ (Γ2/e)⊕ H̃ (Γ2 − e) ,

H̃ (Γ) = H̃ (Γ/e)⊕ H̃ (Γ− e) .
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By inductive hypothesis,

H̃ (Γ/e) = H̃ (Γ1)⊗ H̃ (Γ2/e) ,

H̃ (Γ− e) = H̃ (Γ1)⊗ H̃ (Γ2 − e) .

Taking the direct sum,

H̃ (Γ) = H̃ (Γ1)⊗
(
H̃ (Γ2/e)⊕ H̃ (Γ2 − e)

)
= H̃ (Γ1)⊗ H̃ (Γ2) .
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4 Matroid Type

A Whitney twist on a graph Γ can be defined as follows [Wh, Hug]. Let Γ1

and Γ2 be two graphs. Pick edges e1 ∈ Γ1 and e2 ∈ Γ2. Construct a new
graph by gluing the edges e1 ∈ Γ1 and e2 ∈ Γ2 together (with their endpoints)
and then removing the resulting single edge from the graph. In general this
can be done in two ways depending on how we glue e1 with e2. If one of
them is Γ then the other is a Whitney twist of Γ. Whitney proved that two
2-connected graphs have the same matroid type iff one can be obtained from
the other by a sequence of Whitney twists.

We show that the reduced homology sequence of a graph is invariant
under the Whitney twist. From this we derive that the reduced homology
sequence is an invariant of the matroid type of the graph.

Proposition 4.1. If Γ and Γ′ are related by a Whitney twist, H̃ (Γ) ∼= H̃ (Γ′).

Proof. Let G and G′ be obtained by joining Γ1 and Γ2 along e. By Proposition
2.2,

H̃ i (G) = H̃ i−1 (G/e)⊕ H̃ i (G− e)

and similarly for G′. Set Γ = G − e and Γ′ = G′ − e. We are interested in
proving H̃ i (G− e) ∼= H̃ i (G′ − e), but it suffices to prove the isomorphism
for the other two homology sequences corresponding to G and G′.

Note that G/e = (Γ1/e) ∗ (Γ2/e) = G′/e; hence, the homologies in both
cases are just the tensor product of the homologies of Γ1/e and Γ2/e. To
show the isomorphism of the homology groups of G and G′, we induct on the
number of edges of Γ2.

Base Case. Γ2 cannot have less than one edge, since we have to glue Γ1

and Γ2 together along an edge. If Γ2 has exactly one edge, then Γ = Γ1

regardless of the orientation of the glueing of this edge.
Inductive Step. If Γ2 is a tree on n vertices, then Γ is obtained from Γ1

by adding two subtrees of Γ2 with a total of n− 2 edges. By Proposition 1.6,
H̃ (Γ) = H̃ (Γ1)⊗ R (qn−2) regardless of the orientation of e.

If Γ2 is not a tree, let e′ 6= e ∈ Γ2 be such that its removal does not
disconnect Γ2. Then H̃ i (G) = H̃ i−1 (G/e′) ⊕ H̃ i (G− e′), where G/e′ and
G − e′ are obtained by gluing Γ2/e

′ and Γ2 − e′ respectively to Γ1 along e.
Similarly, H̃ i (G′) = H̃ i−1 (G′/e′) ⊕ H̃ i (G′ − e′). By the inductive assump-
tion, H̃ i−1 (G/e′) ∼= H̃ i−1 (G′/e′) and H̃ i (G− e′) ∼= H̃ i (G′ − e′), and hence
H̃ i (G) ∼= H̃ i (G′).
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Proposition 4.2. The reduced homology sequence is an invariant of the
matroid type of the graph.

Proof. The proof is by induction on the number of edges. There is only one
graph with no edges, so the base of induction is vacuously true.

Inductive Step. If Γ is 2-connected, we are done by Proposition 4.1. If Γ
is not 2-connected, the removal of some vertex v ∈ Γ breaks Γ up into two
connected components, G1 and G2. Adding v back into G1 and G2 we get
subgraphs Γ1 and Γ2 of Γ, where Γ = Γ1 ∗ Γ2 (the vertex being v). Then the
matroid type of Γ is the same as of the disjoint union of Γ1 and Γ2. On the
other hand, H̃ (Γ) = H̃ (Γ1) ⊗ H̃ (Γ2), which is also equal to the homology
sequence of the disjoint union of Γ1 and Γ2.
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5 Relationship to Non-Reduced Homologies

and the Chromatic Polynomial

Here we derive the relationship between the reduced homologies of graphs and
the main diagonal of the usual homologies. Then we describe the Poincaré
polynomial for the reduced homologies in terms of the reduced chromatic
polynomial.

Proposition 5.1. For Cn a cycle with n vertices, H̃ i (Cn) = R (qn−i−1) when
0 ≤ i ≤ n− 2; outside this range, H̃n (Cn) = 0.

Proof. We induct on n.
Base Case. If n = 1, we have a loop, whose homologies are zero. If

n = 2, the graph has two vertices and two edges, so its homology sequence
is H0 (C2) = R (q) (and zero for the first and greater homology groups).

Inductive Step. If i = 0, the zeroth homology group of any connected
n-vertex graph is R(qn−1). For 1 ≤ i, H̃ i (Cn) ∼= H̃ i−1 (Cn/e)⊕ H̃ i (Cn − e).
Now Cn/e = Cn−1, and Cn − e = Tn, a tree on n vertices. By inductive
assumption, H̃ i−1 (Cn−1) = R (qn−i−1) whenever 0 ≤ i − 1 ≤ n − 3, i.e.
1 ≤ i ≤ n − 2; outside this range, H̃ i−1 (Cn−1) = 0. H̃ i (Tn) = R(qn−1)
if i = 0, and 0 otherwise. Adding the two, we get the statement of the
proposition.

Proposition 5.2. Let Rn
Γ (t, q) be the Poincaré polynomial for the i + j = n

diagonal of the usual homologies, and similarly for Rn−1
Γ (t, q). The Poincaré

polynomial for the reduced homologies is

R̃Γ (t, q) =



1
q

(
Rn

Γ (t, q)
(
1 + t

q

)
− tqn−1

)
= 1

q
Rn

Γ (t, q) + Rn−1
Γ (t, q)− qn−1,

if Γ is bipartite
1
q
Rn

Γ (t, q)
(
1 + t

q

)
= 1

q
Rn

Γ (t, q) + Rn−1
Γ (t, q) ,

otherwise

Proof. The second set of equalities is a direct consequence of [CH, Theorem
4.2]. We prove the first set, by induction on the number of edges.

First, we examine the cases of a tree and of a single odd-length-cycle
graph. If Γ is a tree, R̃Γ (t, q) = qn−1. On the other hand, the non-reduced
homologies of Γ are H (Γ) = R (qn) ⊕ R (qn−1) (see [HGR, Example 28]).
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Thus, Rn
Γ (t, q) = qn and Rn−1

Γ (t, q) = qn−1. We observe

qn−1 =
1

q

(
qn

(
1 +

t

q

)
− tqn−1

)
,

as expected since trees are bipartite.
If Γ is a single cycle of length n (odd), then

R̃Γ (t, q) = qn−1 + qn−2t + . . . + qtn−2

The non-reduced Poincaré polynomial, from [HGR, Example 29], is

Rn
Γ (t, q) = qn + qn−2t2 + . . . + q3tn−3

The proposition follows by explicit computation.
Note that if Γ = Γ1 ∗ Γ2 where Γ2 is a tree on n vertices, then both

the reduced and the non-reduced homologies of Γ are computed by taking
the respective homologies of Γ1 and multiplying by R (qn−1). Since adding a
tree in this fashion preserves the bipartite or non-bipartite property, it also
preserves the equality of polynomials above.

Now we proceed to the proper induction step. If Γ is not bipartite and
contains more than one cycle (the one-cycle case was discussed above), then
Γ contains some edge e whose removal does not disconnect Γ and whose
contraction does not make Γ bipartite. (Pick the smallest odd cycle C of Γ.
We know that Γ has some other cycle, C ′ * C. Pick an edge e ∈ C ′ − C.)
Note that both for the regular and the reduced Poincaré polynomials we have
the equation

RΓ (t, q) = RΓ/e (t, q) + RΓ−e (t, q) .

By construction, Γ/e and Γ−e are both not bipartite. By inductive assump-
tion, we may assume that the terms on the right-hand side satisfy the correct
relations. Then

R̃Γ (t, q) =
1

q
Rn

Γ/e (t, q)

(
1 +

t

q

)
+

1

q
Rn

Γ−e (t, q)

(
1 +

t

q

)
=

1

q
Rn

Γ (t, q)

(
1 +

t

q

)
If Γ is bipartite and contains a cycle, we take an edge e contained in some

(even) cycle. Then Γ− e will still be bipartite, but Γ/e will not be bipartite.
Therefore,

R̃Γ (t, q) =
1

q
Rn

Γ/e (t, q)

(
1 +

t

q

)
+

1

q

(
Rn

Γ−e (t, q)

(
1 +

t

q

)
− tqn−1

)
=

1

q

(
Rn

Γ (t, q)

(
1 +

t

q

)
− tqn−1

)
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[CH, Theorem 4.2] derives Rn
Γ (−1, q) from χΓ (q). The corresponding re-

sult for the reduced homologies is much simpler. The chromatic polynomial
is the specification of the Poincaré polynomial at t = −1. The Poincaré poly-
nomial for the reduced homologies is homogeneous of degree n−1 by Proposi-
tion 2.1. Thus, R̃Γ (t, q) is completely determined by R̃Γ (−1, q). Specifically,

R̃Γ (t, q) = qn−1χΓ

(
− t

q

)
.
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