Bollobás-Riordan Polynomial of a Ribbon Graph

Abstract

This paper is a summary of a talk given by Timothy All at the Ohio State University, Summer quarter 2005 in the VIGRE working group "Knot Theory and Combinatorics". We shall define ribbon graphs and introduce the four polynomial invariant according to [1]. We shall then summarize the main results of [1], that is we shall prove that the aforementioned polynomial $R(\mathbf{G})$ satisfies the relation $R(\mathbf{G})=R(\mathbf{G} / e)+R(\mathbf{G}-e)$.

1 Ribbon Graphs

Ribbon graphs can informally be defined as disks attached to each other by thin strips. Keeping this intuitive idea of ribbon graphs in mind, formally we have that a ribbon graph \mathbf{G} is a surface S with boundary with two finite sets of disks: a set $V(\mathbf{G})$ of vertices and a set $E(\mathbf{G})$ of edges. These sets are subject to the following restrictions:

- disks and ribbons intersect by disjoint line segments
- each such line segment lies on the boundary of precisely one vertex and one edge
- every edge contains exactly two such line segments

Example A ribbon graph G with edge e.

Now, let us define some graph parameters for a ribbon graph G. Let

$$
\begin{align*}
v(\mathbf{G}) & :=\|V(\mathbf{G})\|, \text { the number of vertices of } \mathbf{G} \tag{1}\\
e(\mathbf{G}) & :=\|E(\mathbf{G})\|, \text { the number of edges of } \mathbf{G} \tag{2}\\
k(\mathbf{G}) & :=\text { the number of connected components of } \mathbf{G} \tag{3}\\
r(\mathbf{G}) & :=v(\mathbf{G})-k(\mathbf{G}), \text { the rank of } \mathbf{G} \tag{4}\\
n(\mathbf{G}) & :=e(\mathbf{G})-r(\mathbf{G}), \text { the nullity of } \mathbf{G} \tag{5}\\
b c(\mathbf{G}) & :=\text { the number of components of the boundary of } \mathbf{G} \tag{6}\\
t(\mathbf{G}) & :=\text { the orientablility of the surface } \mathbf{G} \tag{7}
\end{align*}
$$

We say that $t(\mathbf{G})=0$ if \mathbf{G} is orientable and $t(\mathbf{G})=1$ if otherwise. Note: $k(\mathbf{G})$ corresponds to the connectedness of \mathbf{G} as a graph whereas $b c(\mathbf{G})$ corresponds to the connectedness of the boundary of \mathbf{G} as a geometric ribbon graph or surface. Moreover, we say that an edge is a loop if both ends of the edge are adjacent to the same vertice, and an edge is called a bridge if its removal would disconnect a component of \mathbf{G}, i.e. if it alters the value of $k(\mathbf{G})$. If e is neither a loop nor a bridge, then it is said to be ordinary.

2 Contracting and Deleting Edges, and Combining Ribbon Graphs

There are four operations that can be performed on a ribbon graph and they affect the graph parameters in varying ways. The first such operation we shall consider will be deleting or removing an edge. To delete an edge from a ribbon graph we simply remove the edge e from the set $E(\mathbf{G})$ and denote the resulting graph by $\mathbf{G}-e$.

Example Let \mathbf{G} be the ribbon graph of the previous example with edge e. Then $\mathbf{G}-e$ is the ribbon graph:

If e is an ordinary edge or a loop, then deletion of e only affects $e(\mathbf{G})$ such that $e(\mathbf{G}-e)=e(\mathbf{G})-1$. All other parameters remain unchanged. If e is a bridge, then in addition we have that $k(\mathbf{G}-e)=k(\mathbf{G})+1$.

For an edge e that is not a loop, we may also contract e in \mathbf{G}. Let e be adjacent to the vertices v_{1} and v_{2}. To contract e, we delete e, v_{1}, and v_{2} and introduce the new vertice $e \cup v_{1} \cup v_{2}$. We denote the resulting graph by \mathbf{G} / e.

Example Using our familiar example where $e \cup v_{1} \cup v_{2}=w$, we see that \mathbf{G} / e is the graph:

For contraction of an edge $e, k(\mathbf{G}), n(\mathbf{G}), b c(\mathbf{G})$, and $t(\mathbf{G})$ remain unchanged while $v(\mathbf{G})$ and $r(\mathbf{G})$ decrease by one.

Now, we shall consider how we may combine two ribbon graphs. The first and most obvious way to join two ribbon graphs \mathbf{G}_{1} and \mathbf{G}_{2} is to take the disjoint union. We denote this combination by $\mathbf{G}_{1} \uplus \mathbf{G}_{2}$. The parameters $v(\mathbf{G}), e(\mathbf{G}), k(\mathbf{G}), r(\mathbf{G}), n(\mathbf{G})$, and $b c(\mathbf{G})$ are all additive with respect to disjoint unions.

The other method of combining ribbon graphs is to take the connected sum or in other words to create a one-point join. To do this we choose any vertice v_{1} in \mathbf{G}_{1} and any vertice v_{2} in \mathbf{G}_{2}, then we pin the two ribbon graphs together at these vertices by identifying a segment of the boundary of v_{1} with a segment of the boundary of v_{2}. We denote this combination by $\mathbf{G}_{1} \cdot \mathbf{G}_{2}$.

Example Refering to our previous examples, this would be one way to form the connected sum of \mathbf{G} and \mathbf{G} / e :

Note that $e(\mathbf{G}), r(\mathbf{G})$, and $n(\mathbf{G})$ are additive with respect to one-point joins, while $v(\mathbf{G}), k(\mathbf{G})$, and $b c(\mathbf{G})$ lose one, that is $k\left(\mathbf{G}_{1} \cdot \mathbf{G}_{2}\right)=k\left(\mathbf{G}_{1}\right)+k\left(\mathbf{G}_{2}\right)-1$, etc.

We need only the notion of a spanning subgraph before we define the ribbon graph polynomial. A spanning subgraph of a ribbon graph \mathbf{G} is a subgraph of \mathbf{G} that includes all the vertices of \mathbf{G} but only a subset of the edges. So, there are naturally $2^{e(\mathbf{G})}$ spanning subgraphs of any ribbon graph \mathbf{G}.

3 The Ribbon Graph Polynomial

The ribbon graph polynomial is similar to the Tutte polynomial but with some extra topological information.
Definition The ribbon graph polynomial $R(\mathbf{G})$ is defined as follows:

$$
\begin{equation*}
R(\mathbf{G})=\sum_{\mathbf{H} \subset \mathbf{G}}(X-1)^{r(\mathbf{G})-r(\mathbf{H})} Y^{n(\mathbf{H})} Z^{k(\mathbf{H})-b c(\mathbf{H})+n(\mathbf{H})} W^{t(\mathbf{H})} \tag{8}
\end{equation*}
$$

where the sum is taken over all spanning subgraphs \mathbf{H}, and $R(\mathbf{G}) \in \mathbf{Z}[X, Y, Z, W] /\left(W^{2}-\right.$ $W)$.
Note that $v(\mathbf{H})=v(\mathbf{G}$, so $r(\mathbf{G})-r(\mathbf{H})=k(\mathbf{H})-k(\mathbf{G})$. Using this equality we can rewrite (8) as follows:

$$
\begin{equation*}
R(\mathbf{G})=(X-1)^{-k(\mathbf{G})} \sum_{\mathbf{H} \subset \mathbf{G}} M(\mathbf{H}) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
M(\mathbf{H})=(X-1)^{k(\mathbf{H})} Y^{n(\mathbf{H})} Z^{k(\mathbf{H})-b c(\mathbf{H})+n(\mathbf{H})} W^{t(\mathbf{H})} \tag{10}
\end{equation*}
$$

Also note that $M\left(\mathbf{H}_{1} \uplus \mathbf{H}_{2}\right)=M\left(\mathbf{H}_{1}\right) M\left(\mathbf{H}_{2}\right)$ since all the parameters in the exponents of $M(\mathbf{H})$ are additive with respect to disjoint unions. What's more, since $k\left(\mathbf{H}_{1} \cdot \mathbf{H}_{2}\right)=$ $k\left(\mathbf{H}_{1}\right)+k\left(\mathbf{H}_{2}\right)-1$ and $b c\left(\mathbf{H}_{1} \cdot \mathbf{H}_{2}\right)=b c\left(\mathbf{H}_{1}\right)+b c\left(\mathbf{H}_{2}\right)-1$ we have that $M\left(\mathbf{H}_{1}\right) M\left(\mathbf{H}_{2}\right)=$ $(X-1) M\left(\mathbf{H}_{1} \cdot \mathbf{H}_{2}\right)$. As \mathbf{H}_{1} and \mathbf{H}_{2} run over the spanning subgraphs of \mathbf{G}_{1} and \mathbf{G}_{2} respectively, we have that $\mathbf{H}_{1} \uplus \mathbf{H}_{2}$ and $\mathbf{H}_{1} \cdot \mathbf{H}_{2}$ run over the spanning subgraphs of $\mathbf{G}_{1} \uplus \mathbf{G}_{2}$ and $\mathbf{G}_{1} \cdot \mathbf{G}_{2}$ respectively. And so we find that

$$
\begin{aligned}
R\left(\mathbf{G}_{1} \uplus \mathbf{G}_{2}\right) & =(X-1)^{k\left(\mathbf{G}_{1} \uplus \mathbf{G}_{2}\right)} \sum_{\mathbf{H}_{1} \subset \mathbf{G}_{1}, \mathbf{H}_{2} \subset \mathbf{G}_{2}} M\left(\mathbf{H}_{1}\right) M\left(\mathbf{H}_{2}\right) \\
& =R\left(\mathbf{G}_{1}\right) R\left(\mathbf{G}_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
R\left(\mathbf{G}_{1} \cdot \mathbf{G}_{2}\right) & =(X-1)^{k\left(\mathbf{G}_{1} \cdot \mathbf{G}_{2}\right)} \sum_{\mathbf{H}_{1} \subset \mathbf{G}_{1}, \mathbf{H}_{2} \subset \mathbf{G}_{2}} M\left(\mathbf{H}_{1}\right) M\left(\mathbf{H}_{2}\right)(X-1)^{-1} \\
& =(X-1)^{-k\left(\mathbf{G}_{1}\right)-k\left(\mathbf{G}_{2}\right)+1-1} \sum_{\mathbf{H}_{1} \subset \mathbf{G}_{1}, \mathbf{H}_{2} \subset \mathbf{G}_{2}} M\left(\mathbf{H}_{1}\right) M\left(\mathbf{H}_{2}\right) \\
& =R\left(\mathbf{G}_{1}\right) R\left(\mathbf{G}_{2}\right)
\end{aligned}
$$

4 Main Theorem

Theorem 4.1 Let \mathbf{G} be any ribbon graph, then

$$
\begin{equation*}
R(\mathbf{G})=R(\mathbf{G} / e)+R(\mathbf{G}-e) \tag{11}
\end{equation*}
$$

for every ordinary edge e of \mathbf{G}, and

$$
\begin{equation*}
R(\mathbf{G})=X R(\mathbf{G} / e) \tag{12}
\end{equation*}
$$

for every bridge e of \mathbf{G}.
Proof The subgraphs of \mathbf{G} not containing e are all the subgraphs of $\mathbf{G}-e$. Now, let $\varphi: \mathbf{H} \rightarrow \mathbf{H} / e$ such that φ is a bijection between the subgraphs of \mathbf{G} containing e to the subgraphs of \mathbf{G} / e. Since the parameters in the exponents of $M(\mathbf{H})$ are all unchanged by the contraction of an ordinary edge e, we have that $M(\mathbf{H})=M(\mathbf{H} / e)$. Now, suppose e is an ordinary edge, so that $k(\mathbf{G})=k(\mathbf{G}-e)=k(\mathbf{G} / e)$, and we see that

$$
\begin{aligned}
R(\mathbf{G}) & =(X-1)^{-k(\mathbf{G})} \sum_{\mathbf{H} \subset \mathbf{G}, e \notin E(\mathbf{G})} M(\mathbf{H})+(X-1)^{-k(\mathbf{G})} \sum_{\mathbf{H} \subset \mathbf{G}, e \in E(\mathbf{G})} M(\mathbf{H}) \\
& =(X-1)^{-k(\mathbf{G}-e)} \sum_{\mathbf{H} \subset \mathbf{G}-e} M(\mathbf{H})+(X-1)^{-k(\mathbf{G} / e)} \sum_{\mathbf{H} \subset \mathbf{G} / e} M(\mathbf{H}) \\
& =R(\mathbf{G}-e)+R(\mathbf{G} / e)
\end{aligned}
$$

proving (11). Now suppose e is a bridge in \mathbf{G} so that $k(\mathbf{G}-e)=k(\mathbf{G})+1$, and we see that

$$
\begin{aligned}
R(\mathbf{G}) & =(X-1)^{-k(\mathbf{G})} \sum_{\mathbf{H} \subset \mathbf{G}-e} M(\mathbf{H})+(X-1)^{-k(\mathbf{G} / e)} \sum_{\mathbf{H} \subset \mathbf{G} / e} M(\mathbf{H}) \\
& =(X-1)^{-k(\mathbf{G}-e)+1} \sum_{\mathbf{H} \subset \mathbf{G}-e} M(\mathbf{H})+R(\mathbf{G} / e) \\
& =(X-1) R(\mathbf{G}-e)+R(\mathbf{G} / e)
\end{aligned}
$$

But since e is a bridge in \mathbf{G}, we can view $\mathbf{G}-e$ as the disjoint union of two graphs \mathbf{G}_{1} and \mathbf{G}_{2}, that is $\mathbf{G}-e=\mathbf{G}_{1} \uplus \mathbf{G}_{2}$. And similarly we may view \mathbf{G} / e as the connected sum of \mathbf{G}_{1} and \mathbf{G}_{2}, i.e. $\mathbf{G} / e=\mathbf{G}_{1} \cdot \mathbf{G}_{2}$. From what has gone on before, we know that $R(\mathbf{G}-e)=R\left(\mathbf{G}_{1} \uplus \mathbf{G}_{2}\right)=R\left(\mathbf{G}_{1}\right) R\left(\mathbf{G}_{2}\right)=R\left(\mathbf{G}_{1} \cdot \mathbf{G}_{2}\right)=R(\mathbf{G} / e)$. And so we have that $R(\mathbf{G})=X R(\mathbf{G} / e)$ proving (12).

References

[1] B. Bollobás, O. Riordan, A Polynomial of Graphs on Surfaces, Math. Ann. 323(1) (2002), 81-96.

