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Our purpose was to find some relation between the Tutte polynomial of a strong map
of matroids, (M, M ′), from the bond matroid, M , of the dual of the original ribbon graph
to the circuit matroid, M ′, of the ribbon graph

T (M, M ′; α, β, γ) =
∑
F⊆E

αr(M ′)−rM′ (F )βnM (F )γr(M)−r(M ′)−(rM (F )−rM′ (F )) (1)

and the Bollobás-Riordan polynomial of the ribbon graph

R(M ′; X,Y, Z) =
∑
F⊆E

Xr(M ′)−rM′ (F )Y nM′ (F )Zk(F )−bc(F )+nM′ (F ). (2)

Figure 1: Our first ribbon graph and its dual.

As an example, if we have figure 1 for our first M ′ and M , respectively, then the
polynomials are R(M ′; X, Y, Z) = 1 + 2Y + Y 2Z2 and T (M, M ′; α, β, γ) = γ2 + 2γ + 1.
So, we notice that T (M, M ′; α, β, γ) = γ2R(M ′, α, γ−1, 1). Similarly for figure 2 we have
R(M ′; X,Y, Z) = X +2+XY +3Y +Y 2Z2 and T (M, M ′; α, β, γ) = αγ2 +2γ2 +αγ +3γ +1,
and so we again get T = γ2R(α, γ−1, 1).

Note that in both cases we have α in the X-slot. This is because in both polynomials
the powers of these two variables are r(M ′)− rM ′(F ). This suggests that our relation should
be of the form T = βb0γc0R(α, βb2γc2 , βb3γc3) for some integers bi, ci. In fact, for most of
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Figure 2: Our second ribbon graph and its dual.

the examples we die where anything of this form worked, we were getting T equalling either
γr(M)−r(M ′)R(α, γ−1, 1) or γr(M)−r(M ′)R(α, β, 1).

Dr. Chmutov suggested to us that we look at Theorem 2 in Bollobás and Riordan’s
paper ”A polynomial of graphs on surfaces” [BR3]. To explain this theorem we’ll need
some preliminaries. And we’ll be making some simplifications since this paper is not solely
interested in oriented ribbon graphs, as we are.

• Let G denote the set of isomorphism classes of connected and oriented ribbon graphs.

• For the coefficient of Y iZj in the Bollobás-Riordan polynomial, R, we’ll write Rij. So
each Rij is a map from G to Z[X].

• Given a ring R and x∈R, Rij(x) will mean the map from G to R given by composing
the map Rij with the natural ring homomorphism from Z[X] to R which maps X to
x.

Also, note that this theorem is for the polynomial defined by

R(G) =
∑
F⊆E

(X − 1)r(M ′)−rM′ (F )Y nM′ (F )Zk(F )−bc(F )+nM′ (F )

rather than (2), although I suspect that this shouldn’t affect us much.

Theorem 1 Let R be a commutative ring, x an element of R, and φ a map from G to R
satisfying

φ(G) =

{
φ(G/e) + φ(G− e) if e is ordinary,

xφ(G/e) if e is a bridge.

Then there are elements λij for i ≥ 0, 0 ≤ j ≤ i, such that

φ =
∑
i,j

λijRij(x).
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Figure 3: A problematic example

Now in our specific example, R should be Z[α, β, γ] and x = α. But note that in the
first example above 2Y gets sent to 2γ, and in the next example, from figure 3, 4Y gets sent
to 3γ + βγ2.

The general problem we seemed to have had is exemplified here in figure 3, for which
many of the calculations can be seen in table 1. Note that, although with just one loop in
M ′ we always get the monomial Y , in the Tutte polynomial we get γ for the loops a, b, or
c, and βγ2 for the loop d.

∅ a b c d . . . bcd acd abd abc E
rM ′ 0 0 0 0 0 0 0 0 0 0
nM ′ 0 1 1 1 1 3 3 3 3 4
k 1 1 1 1 1 1 1 1 1 1
bc 1 2 2 2 2 2 2 2 4 3

1 Y Y Y Y Y 3Z2 Y 3Z2 Y 3Z2 Y 3 Y 4Z2

rM 0 1 1 1 0 2 2 2 1 2
nM 0 0 0 0 1 1 1 1 2 2

γ2 γ γ γ βγ2 β β β β2γ β2

Table 1: The polynomial calculations for figure 3
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