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Introduction.

The Kauffman bracket and the Jones polynomial [Ka1]

Let L be a link diagram.

A-splitting:

B-splitting:

A state S is a choice of either A- or B-splitting at every
classical crossing.

α(S) = #(of A-splittings in S)

β(S) = #(of B-splittings in S)

δ(S) = #(of circles in S)

[L](A,B, d) :=
∑

S

Aα(S) Bβ(S) dδ(S)−1

JL(t) := (−1)w(L)t3w(L)/4[L](t−1/4, t1/4,−t1/2
− t−1/2)

Virtual links [Ka3, Kam]

Virtual
crossings

Reidemeister moves

Checkerboard colorable virtual links (Naoko Kamada)

colorable non-colorable
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Example

(α, β, δ) (3, 0, 1) (2, 1, 2) (2, 1, 2) (1, 2, 1)

(2, 1, 2) (1, 2, 1) (1, 2, 3) (0, 3, 2)

[L] = A3 + 3A2Bd + 2AB2 + AB2d2 + B3d; JL(t) = 1

Ribbon graphs (B. Bollobás and O. Riordan [BR2, BR3])

A ribbon graph G is a surface rep-
resented as union of vertices-discs
(green) and edges-ribbons (yellow)
such that

• discs and ribbons intersect by
disjoint line segments,

• each such line segment lies on
the boundary of precisely one
vertex and precisely one edge;

• every edge contains exactly
two such line segments.

Examples

G = Γ =

G

Γ

The Bollobás-Riordan polynomial [BR2, BR3]
Let

• G be a ribbon graph;

• v(G) be the number of its vertices;

• e(G) be the number of its edges;

• k(G) be the number of components of G;

• r(G) := v(G) − k(G) be the rank of G;

• n(G) := e(G) − r(G) be the nullity of G;

• bc(G) be the number of connected compo-
nents of the boundary of G;

Example

G =

Γ =

v(G) = 1
e(G) = 2
k(G) = 1
r(G) = 0
n(G) = 2

bc(G) = 1

RG(x, y, z) = 1 + 2y + y2z2
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RG(x, y, z) :=
∑

F

xr(G)−r(F )yn(F )zk(F )−bc(F )+n(F )

Example

(k, r, n, bc) (1, 1, 2, 1) (1, 1, 1, 2) (1, 1, 1, 2) (1, 1, 0, 1)

(1, 1, 1, 2) (1, 1, 0, 1) (2, 0, 1, 3) (2, 0, 0, 2)

RG(x, y, z) = y2z2 + 3y + 2 + xy + x

Relations to the Tutte polynomial

• RG(x − 1, y − 1, 1) = TΓ(x, y).

• If G is planar (genus zero): RG(x − 1, y − 1, z) = TΓ(x, y).

Thistlethwaite’s Theorem [Th, Ka1, Ja] Up to a sign and multiplication by a power of t the Jones
polynomial JL(t) of an alternating link L is equal to the Tutte polynomial TΓ(−t,−t−1).

The theorem was generalized to non-alternating links (using signed graphs in [Ka2] and using the Bol-
lobás-Riordan polynomial for ribbon graphs in [DFKLS]; and checkerboard colorable virtual links in
[CP].

Theorem [CP]. Let L be an alternating virtual link and GL be the corresponding ribbon graph. Then

[L](A,B, d) = Ar(G)Bn(G)dk(G)−1 RGL

(

Bd

A
,
Ad

B
,
1

d

)
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Project 1. Virtual links. erica j. Whitaker, Stephen Swihart, Jeremy Voltz.

Generalize the theorem of [CP] to arbitrary virtual links. Probably one should use the non-orientable
signed version of the Bollobás-Riordan polynomial from [BR3] and generalize the construction of a ribbon
graph corresponding to a link diagram from [DFKLS]. Are there any other virtual link invariants which
can be obtained from the Bollobás-Riordan polynomial?

Project 2. Parallel connection of ribbon graphs. Nishali Mehta, Nicholas Kefauver, Alex
Mominee.

Tensor product G1⊗G2 of two (ribbon) graphs G1 and G2 can be defined as a result of replacement of
each edge of G1 by a copy of the graph G2. There is a formula [Hug, JVW, Wo] for the Tutte polynomial
of G1 ⊗G2 in terms of the Tutte polynomials of G1 and G2. This project aims to generalize this formula
to the the Bollobás-Riordan polynomial of ribbon graphs. Some special cases of such formulas for ribbon
graphs were found in [Mof, p.8-9].

Project 3. Strong maps of matroids. Charles Estill, Daniel Grollmus, Min Ro.

For each ribbon graph, regarded as a graph embedded into a surface, there is a dual ribbon graph,
embedded into the same surface. The matroids of these two graphs form the so called strong map of
matroids. For a strong map of matroids there is a generalization of the Tutte polynomials which is a
polynomial in three variables [LV1, LV2]. Investigate the relations of this polynomial with the Bollobás-
Riordan polynomial of the initial ribbon graph. For general intoroduction to matroids see [Ox, Wh].

Project 4. Hamilton cycles. James Sharpnack, Justin Wiser.

The number of Hamilton cycles in a graph can be found using tensors from linear algebra [Zo].
Namely, with each vertex of a graph we associate a tensor of the valency equal to the valency of the
vertex. If two vertices are connected by an edge we contract the corresponding tensor factors. After all
contractions we will get a number which is equal to the number of Hamilton cycles of the graph. Study
this construction in the special case of the Cayley graph of a finite group. Determine the tensors in terms
of the group. Is it possible to simplify the corresponding tensors in this case?

Project 5. Polyak-Viro formulas for Vassiliev invariants. Michael (Cap) Khoury, Al-
fred Rossi.

The notion of finite type (Vassiliev) knot invariants appeared around 1990 in V. Vassiliev’s inves-
tigations of discriminants in the (infinite-dimensional) spaces of smooth maps from one manifold into
another. The idea is to extend a knot invariant v to singular knots with double points according to the
rule

v( ) = v( ) − v( ) ,
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known as Vassiliev’s skein relation. An invariant v is called a Vassiliev invariant of order 6 n if its
extension vanishes on all singular knots with more than n double points. The main combinatorial object
underlying this theory is a function on chord diagrams (a circle with a bunch of chords in it) satisfying
the following 4-term relation. Such a function is called a weight system.

v( ) − v( ) + v( ) − v( ) = 0 .

For a reader-friendly introduction to this theory see the draft of our book [CD]. A way to describe
Vassiliev invariants of a knot in terms of its Gauss diagram was found by M. Polyak and O. Viro (see
[CD, Ch.13]). Find the Polyak-Viro formulas for the the coefficients of the Jones polynomial, the Conway
polynomial, other polynomial knot invariants.

Project 6. Khovanov homology of links. Shaun Van Ault, Brad Waller.

Several years ago M. Khovanov [Kho] discovered a homology theory for links whose graded Euler
characteristic is equal to the Jones polynomial. More precisely, for every link L he defined a sequence of
vector spaces (abelian groups) Hi,j(L) such that

JL(q) =
∑

i,j

(−1)iqj dim(Hi,j(L)) .

There are two excellent expositions of this theory [BN, Vi]. This project is a continuation of the last
summer project. Namely last summer we found two simplicial complexes whose homology are the top
and the bottom lines of the Khovanov homology. Do the same for other lines of the Khovanov complex.
This will require a generalization of the results of Bae and Morton [BM] to the other coefficients of the
Jones polynomial.
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