Jones polynomial
bigskip The Kauffman bracket and the Jones polynomial [Ka1].

Let L be a link diagram.

A state S is a choice of either A - or B-splitting at every classical crossing.

$$
\begin{aligned}
& \alpha(S)=\#(\text { of } A \text {-splittings in } S) \\
& \beta(S)=\#(\text { of } B \text {-splittings in } S) \\
& \delta(S)=\#(\text { of circles in } S) \\
& {[L](A, B, d):=\sum_{S} A^{\alpha(S)} B^{\beta(S)} d^{\delta(S)-1}} \\
& J_{L}(t):=(-1)^{w(L)} t^{3 w(L) / 4}[L]\left(t^{-1 / 4}, t^{1 / 4},-t^{1 / 2}-t^{-1 / 2}\right)
\end{aligned}
$$

Example

Thistlethwaite's Theorem [Ka1] Up to a sign and multiplication by a power of the Jones polynomial $J_{L}(t)$ of an alternating link L is equal to the Tutte polynomial $T_{\Gamma}\left(-t,-t^{-1}\right)$.

The theorem was generalized to non-alternating links using signed graphs in [Ka2] and using the Bollobás-Riordan polynomial for ribbon graphs in [DFKLS]; and to virtual links in [ChVo, Ch].

Theorem [Ch].
Let L be a virtual link diagram with e classical crossings, G_{L}^{s} be the signed ribbon graph corresponding to a state s, and $v:=v\left(G_{L}^{s}\right), k:=k\left(G_{L}^{s}\right)$. Then $e=e\left(G_{L}^{s}\right)$ and

$$
[L](A, B, d)=A^{e}\left(\left.x^{k} y^{v} z^{v+1} R_{G_{L}^{s}}(x, y, z)\right|_{x=\frac{A d}{B}, y=\frac{B d}{A}, z=\frac{1}{d}}\right)
$$

Construction of a ribbon graph from a virtual link diagram

Diagram

Attaching planar bands
Replacing bands by arrows
$1-+2-\Theta 3-\bigcirc$

Untwisting state circles

Pulling state circles apart

Forming the ribbon graph G_{L}^{s}

References

[Ch] S. Chmutov, Generalized duality for graphs on surfaces and the signed Bollobás-Riordan polynomial, Journal of Combinatorial Theory, Ser. B 99(3) (2009) 617-638; preprint arXiv:math.C0/0711.3490.
[ChVo] S. Chmutov, J. Voltz, Thistlethwaite's theorem for virtual links. Journal of Knot Theory and Its Ramifications, $\mathbf{1 7}(10)$ (2008) 1189-1198; preprint arXiv:math.GT/0704.1310.
[DFKLS] O. Dasbach, D. Futer, E. Kalfagianni, X.-S. Lin, N. Stoltzfus, The Jones polynomial and graphs on surfaces, Journal of Combinatorial Theory, Ser.B 98 (2008) 384-399; preprint math.GT/0605571.
[Ka1] L. H. Kauffman, New invariants in knot theory, Amer. Math. Monthly 95 (1988) 195-242.
[Ka2] L. H. Kauffman, A Tutte polynomial for signed graphs, Discrete Appl. Math. 25 (1989) 105-127.

