The Las Vergnas polynomial

Reference: M. Las Vergnas [LV].

Matroid perspectives.

A bijection $M \to M'$ is called *matroid perspective* if any circuit of M is mapped to a union of circuites of M'. Equivalently,

 $r_M(X) - r_M(Y) \ge r_{M'}(X) - r_{M'}(Y)$ for all $Y \subseteq X$.

Example.

For graphs G and G^* dually embedded in a surface, then the map of the bond matroid of G^* onto the circuit matroid of $G, \mathcal{B}(G^*) \to \mathcal{C}(G)$, is a matroid perspective.

Definition.

$$T_{M \to M'}(x, y, z) := \sum_{X \subseteq M} (x - 1)^{r(M') - r_{M'}(X)} (y - 1)^{n_M(X)} z^{(r(M) - r_M(X)) - (r(M') - r_{M'}(X))}$$

Properties.

$$\begin{split} T_M(x,y) &= T_{M \to M}(x,y,z) ; \\ T_M(x,y) &= T_{M \to M'}(x,y,x-1) ; \\ T_{M'}(x,y) &= (y-1)^{r(M)-r(M')} T_{M \to M'}(x,y,\frac{1}{y-1}) ; \end{split}$$

For a ribbon graph G, let $t_G(x, y, z) := T_{\mathcal{B}(G^*) \to \mathcal{C}(G)}(x, y, z)$.

 $\begin{array}{ll} t_G = t_{G-e} + t_{G/e} & \mbox{if e is neither a bridge nor a loop $;$} \\ t_G = x T_{G/e} & \mbox{if e is a bridge $;$} \\ t_{\bullet} = 1 \ . \end{array}$

The relative Tutte polynomial

Reference: Y. Diao, G. Hetyei [DH].

Definition.

Let H be a subset of edges, 0-edges, of a graph G. For another subset, $F \subset G \setminus H$ let H_F be a graph obtained from G by deleting the edges in $\overline{F} := G \setminus (F \cup H)$ and contracting the edges from F.

$$T_H(G) := \sum_{F \subseteq G \setminus H} \left(\prod_{e \in F} x_e\right) \left(\prod_{e \in \bar{F}} y_e\right) X^{r(G) - r(F \cup H)} Y^{n(F)} \psi(H_F)$$

where ψ is a block-invariant function on graphs.

References

- [DH] Y. Diao, G. Hetyei, Relative Tutte polynomials for colored graphs and virtual knot theory, Combinatorics, Probability and Computing 19 (2010) 343-369.
- [LV] M. Las Vergnas, On the Tutte polynomial of a morphism of matroids, Annals of Discrete Mathematics 8 (1980) 7–20.