Definitions of matroids

References: J. Oxley [Ox], H. Whitney [Wh].

Independent sets.

 $\overline{A \text{ matroid is a pair } (E, \mathcal{I})}$ consisting of a finite set E and a nonempty collection \mathcal{I} of its subsets, called *independent sets*, satisfying the axioms:

- (I1) Any subset on an independent set is independent.
- (I2) If X and Y are independent and |X| = |Y| + 1, then there is an element x in X Y such that $Y \cup \{x\}$ is independent.

Circuits.

A matroid is a pair (E, C) consisting of a finite set E and a nonempty collection C of its subsets, called *circuits*, satisfying the axioms:

- (C1) No proper subset of a circuit is a circuit.
- (C2) If C_1 and C_2 are distinct circuits and $c \in C_1 \cap C_2$, then $(C_1 \cup C_2) \{c\}$ contains a circuit.

Bases.

A matroid is a pair (E, \mathcal{B}) consisting of a finite set E and a nonempty collection \mathcal{B} of its subsets, called *bases*, satisfying the axioms:

- **(B1)** No proper subset of a base is a base.
- (B2) If B_1 and B_2 are bases and $b_1 \in B_1 B_2$, then there is an element $b_2 \in B_2 B_1$ such that $(B_1 \{b_1\}) \cup \{b_2\}$ is a base.

Rank function.

A matroid is a pair (E, r) consisting of a finite set E and a function r, rank, assigning a number to a subset of E and satisfying the axioms:

- (R1) The rank of an empty subset is zero.
- **(R2)** For any subset X and any element $y \notin X$,

$$r(X \cup \{y\}) = \begin{cases} r(X) , & or \\ r(X) + 1 . \end{cases}$$

(R3) For any subset X and two elements y, z not in X, if $r(X \cup \{y\}) = r(X \cup \{z\}) = r(X)$, then $r(X \cup \{y, z\}) = r(X)$.

Tutte polynomial.

$$T_M(x,y) := \sum_{X \subseteq E} (x-1)^{r(E)-r(X)} (y-1)^{n(X)}$$

Fig. 1 W.T. Turte Photograph taken by Michel Las Verguns at the CRM workshop. Barceloun, September 2001. Advances in Applied Math., **32** (2004) 1–2.

References

- [Ox] J. Oxley, What is a matroid?, preprint http://www.math.lsu.edu/ oxley/survey4.pdf.
- [Wh] H. Whitney, On the abstract properties of linear dpendence, Amer. J. Math. 57(3) (1935) 509-533.