Ribbon graphs and the Bollobás-Riordan polynomial

Definition. A ribbon graph G is a surface (possibly non-orientable) with boundary, represented as the union of two sets of closed topological discs called vertices $V(G)$ and edges $E(G)$, satisfying the following conditions:

- these vertices and edges intersect by disjoint line segments;
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two such line segments.

The Bollobás-Riordan polynomial

$$
R_{G}\left(\left\{x_{e}, y_{e}\right\}, X, Y, Z\right):=\sum_{F \subseteq G}\left(\prod_{e \in F} x_{e}\right)\left(\prod_{e \in \bar{F}} y_{e}\right) X^{r(G)-r(F)} Y^{n(F)} Z^{k(F)-\mathrm{bc}(F)+n(F)}
$$

For signed graphs, we set

$$
\begin{cases}x_{+}=1, & x_{-}=(X / Y)^{1 / 2} \\ y_{+}=1, & y_{-}=(Y / X)^{1 / 2}\end{cases}
$$

Example.

Properties.

$$
\begin{array}{ll}
R_{G}=x_{e} R_{G / e}+y_{e} R_{G-e} & \text { if } e \text { is ordinary, that is neither a bridge nor a loop, } \\
R_{G}=\left(x_{e}+X y_{e}\right) R_{G / e} & \text { if } e \text { is a bridge. } \\
R_{G_{1} \sqcup G_{2}}=R_{G_{1} \cdot G_{2}}=R_{G_{1}} \cdot R_{G_{2}} &
\end{array}
$$

