Definitions of matroids

References: J. Oxley [Ox], D. J. A. Welsh [Wel], H. Whitney [Wh].

Independent sets.

A matroid is a pair $M=(E, \mathcal{I})$ consisting of a finite set E and a nonempty collection \mathcal{I} of its subsets, called independent sets, satisfying the axioms:
(I1) Any subset on an independent set is independent.
(I2) If X and Y are independent and $|X|=|Y|+1$, then there is an element $x \in X-Y$ such that $Y \cup x$ is independent.

Circuits.

A matroid is a pair $M=(E, \mathcal{C})$ consisting of a finite set E and a nonempty collection \mathcal{C} of its subsets, called circuits, satisfying the axioms:
(C1) No proper subset of a circuit is a circuit.
(C2) If C_{1} and C_{2} are distinct circuits and $c \in C_{1} \cap C_{2}$, then $\left(C_{1} \cup C_{2}\right)-c$ contains a circuit.
Bases.
A matroid is a pair $M=(E, \mathcal{B})$ consisting of a finite set E and a nonempty collection \mathcal{B} of its subsets, called bases, satisfying the axioms:
(B1) No proper subset of a base is a base.
(B2) If B_{1} and B_{2} are bases and $b_{1} \in B_{1}-B_{2}$, then there is an element $b_{2} \in B_{2}-B_{1}$ such that $\left(B_{1}-b_{1}\right) \cup b_{2}$ is a base.

Rank function.

A matroid is a pair $M=(E, r)$ consisting of a finite set E and a function r, rank, assigning a number to a subset of E and satisfying the axioms:
(R1) The rank of an empty subset is zero.
(R2) For any subset X and any element $y \notin X$,

$$
r(X \cup\{y\})=\left\{\begin{array}{l}
r(X), \quad o r \\
r(X)+1 .
\end{array}\right.
$$

(R3) For any subset X and two elements y, z not in X, if $r(X \cup y)=r(X \cup z)=r(X)$, then $r(X \cup\{y, z\})=r(X)$.

Properties.

- For an independent set X, the rank is equal to its cardinality, $r(X)=|X|$.
- Circuits are minimal dependent subsets.
- Circuits are the subsets X with $r(X)=|X|-1$.
- A base is a maximal independent set.
- Rank of a subset X is equal to the cardinality of the maximal independent subset of X.
- All bases have the same cardinality which is called the rank of matroid, $r(M)$.
- Rank of a subset X is equal to the cardinality of the maximal independent subset of X.

Examples.

1. The cycle matroid $\mathcal{C}(G)$ of a graph G. The underlying set E is the set of edges $E(G)$. A subset $X \subset E$ is independent if and only if it does not contain any cycle of G. A base consist of edges of a spanning forest of G. The rank function is given by $r(X):=v(G)-k(X)$, where $v(G)$ is the number of vertices of G and $k(X)$ is the number of connected components of the spanning subgraph of G consisting of all the vertices of G and edges of X.
2. The bond matroid $\mathcal{B}(G)$ of a graph G. The circuits of $\mathcal{B}(G)$ are the minimal edge cuts, also known as the bonds of G. These are minimal collections of the edges of G which, when removed
from G, increase the number of connected components. The rank $r(X)$ is equal to the maximal number of edges deletion of which do not increase the number of connected components of the spanning subgraph wich edges from X.
3. The uniform matroid $U_{k, n}$ is a matroid on an n-element set E where all subsets of cardinality $\leqslant k$ are independent. For the complete graph K_{3} with three vertices, $\mathcal{C}\left(K_{3}\right)=U_{2,3}$. The matroid $U_{2,4}$ is not graphical. That is there is no any graph G such that $\mathcal{C}(G)=U_{2,4}$. It is also not cographical. That is there is no any graph G such that $\mathcal{B}(G)=U_{2,4}$.
4. A finite set of vectors in a vector space over a filed \mathbb{F} has a natural matroid structure which is called representable (over \mathbb{F}). We may think about the vectors as column vectors of a matrix. The rank function is the dimension of the subspace spanned by the subset of vectors, or the rank of the corresponding submatrix. The cycle matroid $\mathcal{C}(G)$ is representable (over \mathbb{F}_{2}). The correspondent matrix is the incidence matrix of G, i.e. the matrix whose (i, j)-th entry is 1 if and only if the i-th vertex is incident to the j-th edge. The uniform matroid $U_{2,4}$ is not representable over \mathbb{F}_{2}, but it is representable over \mathbb{F}_{3}.

Dual matroids.

Given any matroid M, there is a dual matroid M^{*} with the same underlying set and with the rank function given by $r_{M^{*}}(H):=|H|+r_{M}(M \backslash H)-r(M)$. In particular $r(M)+r\left(M^{*}\right)=|M|$. Any base of M^{*} is a complement to a base of M. The bond matroid of a graph G is dual to the cycle matroid of $G: \mathcal{B}(G):=(\mathcal{C}(G))^{*}$.

The Whitney planarity criteria [Wh] says that a graph G is planar if and only if its bond matroid $\mathcal{B}(G)$ is graphical. In this case, it will be the cycle matroid of the dual graph, $\mathcal{B}(G)=$ $(\mathcal{C}(G))^{*}=\mathcal{C}\left(G^{*}\right)$.

Tutte polynomial.

$$
T_{M}(x, y):=\sum_{X \subseteq E}(x-1)^{r(E)-r(X)}(y-1)^{n(X)}
$$

References

[Ox] J. Oxley, What is a matroid?, preprint http://www.math.lsu.edu/ oxley/survey4.pdf.
[Wel] D. J. A. Welsh, Matroid Theory, Academic Press, London, New York, 1976.
[Wh] H. Whitney, On the abstract properties of linear dpendence, Amer. J. Math. 57(3) (1935) 509-533.

