HOMFLYPT polynomial

The *HOMFLY polynomial* P(L) is defined as a Laurent polynomial in two variables a and z with integer coefficients satisfying the following skein relation and the initial condition:

$$aP((1)) - a^{-1}P((1)) = zP((1)); \qquad P(\bigcirc) = 1.$$

The existence of such an invariant is a difficult theorem. It was established simultaneously and independently by five groups of authors [HOM, PT] (see also [Lik]). The HOMFLY polynomial is equivalent to the collection of quantum invariants associated with the Lie algebra \mathfrak{sl}_N and its standard N-dimensional representation for all values of N.

Examples.

$$P\left(\bigcup\right) = (2a^2 - a^4) + a^2 z^2, \qquad P\left(\bigcup\right) = (a^{-2} - 1 + a^2) - z^2$$

Properties.

- (1) HOMFLYPT polynomial of a knot is preserved when the knot orientation is reversed.
- (2) $P(\overline{L}) = \overline{P(L)}$, where \overline{L} is the mirror reflection of L and $\overline{P(L)}$ is the polynomial obtained from P(L) by substituting a^{-1} for a;
- (3) $P(K_1 \# K_2) = P(K_1) \cdot P(K_2);$
- (4) $P(L_1 \sqcup L_2) = \frac{a-a^{-1}}{z} \cdot P(L_1) \cdot P(L_2);$ (5) $P(8_8) = P(10_{129})$ and P(C) = P(KT) for the Conway, C, and the Kinoshita–Terasaka, KT, knots below.

$$8_8 =$$
, $10_{129} =$, $C =$, $KT =$

Two-variable Kauffman polynomial

L. Kauffman [Ka] found another invariant Laurent polynomial F(L) in two variables a and z. Firstly, for a unoriented link diagram D we define a polynomial $\Lambda(D)$ which is invariant under Reidemeister moves II and III and satisfies the skein relations

$$\Lambda((1)) + \Lambda((1)) = z(\Lambda((1))) + \Lambda((1)),$$

$$\Lambda((1)) = a\Lambda((1)), \qquad \Lambda((1)) = a^{-1}\Lambda((1)),$$

and the initial condition $\Lambda(()) = 1$.

Now, for any diagram D of an oriented link L we put

$$F(L) := a^{-w(D)} \Lambda(D).$$

The Kauffman polynomial is equivalent to the collection of the quantum invariants associated with the Lie algebra \mathfrak{so}_N and its standard N-dimensional representation for all values of N.

Examples.

$$F\left(\bigcup_{i=1}^{n}\right) = (-2a^{2} - a^{4}) + (a^{3} + a^{5})z + (a^{2} + a^{4})z^{2} ,$$

$$F\left(\bigcup_{i=1}^{n}\right) = (-a^{-2} - 1 - a^{2}) + (-a^{-1} - a)z + (a^{-2} + 2 + a^{2})z^{2} + (a^{-1} + a)z^{3} .$$

Properties.

- (1) F(K) is preserved when the knot orientation is reversed.
- (2) $F(\overline{L}) = \overline{F(L)}$, where \overline{L} is the mirror reflection of L, and $\overline{F(L)}$ is the polynomial obtained from F(L) by substituting a^{-1} for a;
- (3) $F(K_1 \# K_2) = F(K_1) \cdot F(K_2);$
- (4) $F(L_1 \sqcup L_2) = \left((a + a^{-1})z^{-1} 1 \right) \cdot F(L_1) \cdot F(L_2);$ (5) $F(11_{255}) = F(11_{257});$

(these knots can be distinguished by the Conway and, hence, by the HOMFLY polynomial).

Vassiliev knot invariants

The main idea of the combinatorial approach to the theory of *Vassiliev knot invariants*, also known as *finite type invariants*, is to extend a knot invariant v to singular knots with double points according to the following rule, which we will refer to as *Vassiliev skein relation*:

Definition. A knot invariant is said to be a *Vassiliev invariant* of order (or degree) $\leq n$ if its extension vanishes on all singular knots with more than n double points.

Denote by \mathcal{V}_n the set of Vassiliev invariants of order $\leq n$ with values in the field of complex numbers \mathbb{C} . The definition implies that, for each n, the set \mathcal{V}_n forms a complex vector space. Moreover, $\mathcal{V}_n \subseteq \mathcal{V}_{n+1}$, so we have an increasing filtration

$$\mathcal{V}_0 \subseteq \mathcal{V}_1 \subseteq \mathcal{V}_2 \subseteq \cdots \subseteq \mathcal{V}_n \subseteq \cdots \subseteq \mathcal{V} := igcup_{n=0}^\infty \mathcal{V}_n \; .$$

It will be shown that the spaces \mathcal{V}_n have finite dimension, and that the quotients $\mathcal{V}_n/\mathcal{V}_{n-1}$ admit a nice combinatorial description. The study of these spaces is the main purpose of the combinatorial Vassiliev invariant theory. The exact dimension of \mathcal{V}_n is known only for $n \leq 12$:

n	0	1	2	3	4	5	6	7	8	9	10	11	12
$\dim \mathcal{V}_n$	1	1	2	3	6	10	19	33	60	104	184	316	548
$\dim \mathcal{V}_n/\mathcal{V}_{n-1}$	1	0	1	1	3	4	9	14	27	44	80	132	232

References

- [HOM] P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, A. Ocneanu, A new polynomial invariant of knots and links, Bull. AMS 12 (1985) 239–246.
- [Ka] L. Kauffman, An invariant of regular isotopy, Transactions of the AMS, 318, no. 2, 417–471, 1990.
- [Lik] W. B. R. Lickorish, An introduction to knot theory, Springer-Verlag New York, Inc. (1997).
- [PT] J. Przytycki, P. Traczyk, Invariants of links of the Conway type, Kobe J. Math. 4 (1988) 115–139.