Dual representable matroids

Let $E=\left\{v_{1}, \ldots, v_{n}\right\}$ be a collection of vectors in a vector space U and M be a matroid of their linear dependences. Consider an n-dimensional vector space V with a basis e_{1}, \ldots, e_{n} and a linear map $f: V \rightarrow U$ sending e_{k} to v_{k}. Denote the kernel of this map by W. It is a subspace of V and there is a natural inclusion map $i: W \hookrightarrow V$. There is the dual map $W^{*} \stackrel{i}{*}_{\longleftarrow}^{*} V^{*}$ of dual vector spaces. The space V^{*} has a natural dual basis $e_{1}^{*}, \ldots, e_{n}^{*}$. Their images $i^{*}\left(e_{1}^{*}\right), \ldots, i^{*}\left(e_{n}^{*}\right)$ is a collection of vectors in the space W^{*}. These vectors with the structure of linear dependences between them form the dual matroid M^{*}.

The Las Vergnas polynomial

Reference: M. Las Vergnas [LV].

Matroid perspectives.

A bijection $M \rightarrow M^{\prime}$ is called matroid perspective if any circuit of M is mapped to a union of circuites of M^{\prime}. Equivalently,

$$
r_{M}(X)-r_{M}(Y) \geqslant r_{M^{\prime}}(X)-r_{M^{\prime}}(Y) \quad \text { for all } \quad Y \subseteq X
$$

Example.

For graphs G and G^{*} dually embedded in a surface, then the map of the bond matroid of G^{*} onto the circuit matroid of $G, \mathcal{B}\left(G^{*}\right) \rightarrow \mathcal{C}(G)$, is a matroid perspective.

Definition.

$$
T_{M \rightarrow M^{\prime}}(x, y, z):=\sum_{X \subseteq M}(x-1)^{r\left(M^{\prime}\right)-r_{M^{\prime}}(X)}(y-1)^{n_{M}(X)} z^{\left(r(M)-r_{M}(X)\right)-\left(r\left(M^{\prime}\right)-r_{M^{\prime}}(X)\right)}
$$

Properties.

$$
\begin{aligned}
& T_{M}(x, y)=T_{M \rightarrow M}(x, y, z) \\
& T_{M}(x, y)=T_{M \rightarrow M^{\prime}}(x, y, x-1) \\
& T_{M^{\prime}}(x, y)=(y-1)^{r(M)-r\left(M^{\prime}\right)} T_{M \rightarrow M^{\prime}}\left(x, y, \frac{1}{y-1}\right)
\end{aligned}
$$

Ribbon graphs (graphs on surfaces)

Definition. A ribbon graph G is a surface (possibly non-orientable) with boundary, represented as the union of two sets of closed topological discs called vertices $V(G)$ and edges $E(G)$, satisfying the following conditions:

- these vertices and edges intersect by disjoint line segments;
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two such line segments.

The Bollobás-Riordan polynomial

Reference: B. Bollobás and O. Riordan [BR].

$$
R_{G}\left(\left\{x_{e}, y_{e}\right\}, X, Y, Z\right):=\sum_{F \subseteq G}\left(\prod_{e \in F} x_{e}\right)\left(\prod_{e \in \bar{F}} y_{e}\right) X^{r(G)-r(F)} Y^{n(F)} Z^{k(F)-\mathrm{bc}(F)+n(F)}
$$

For signed graphs, we set $\quad \begin{cases}x_{+}=1, & x_{-}=(X / Y)^{1 / 2}, \\ y_{+}=1, & y_{-}=(Y / X)^{1 / 2} .\end{cases}$

Example.

Properties.

$$
\begin{array}{ll}
R_{G}=x_{e} R_{G / e}+y_{e} R_{G-e} & \text { if } e \text { is ordinary, that is neither a bridge nor a loop, } \\
R_{G}=\left(x_{e}+X y_{e}\right) R_{G / e} & \text { if } e \text { is a bridge. } \\
R_{G_{1} \sqcup G_{2}}=R_{G_{1} \cdot G_{2}}=R_{G_{1}} \cdot R_{G_{2}} &
\end{array}
$$

[BR] B. Bollobás and O. Riordan, A polynomial of graphs on surfaces, Math. Ann. 323 (2002) 81-96.
[LV] M. Las Vergnas, On the Tutte polynomial of a morphism of matroids, Annals of Discrete Mathematics 8 (1980) 7-20.

