Gauss diagrams.

A Gauss word is a word where each letter appears twice considering up to a cyclic permutation. For example, here are equal Gauss words.

$$
a b c a b c=b c a b c a=c a b c a b .
$$

Gauss word of a plane immersed curve and its Gauss diagram:

Non-realizable Gauss word: abab.

Gauss diagram of a knot:

Virtual Reidemeister moves [Po].

Jones polynomial via Gauss diagrams. [Zul]
Let G be a Gauss diagram representing a knot K. Denote by $[G]$ the set of arrows of G. The sign of an arrow $c \in[G]$ can be considered as a value of the function sign : $[G] \rightarrow\{-1,+1\}$. A state s for G is an arbitrary function $s:[G] \rightarrow\{-1,+1\}$; in particular, for a Gauss diagram with n arrows there are 2^{n} states. The function $\operatorname{sign}(\cdot)$ is one of them. With each state s we associate an immersed plane curve in the following way. Double every chord c according to the rule:

Let $|s|$ denote the number of connected components of the curve obtained by doubling all the chords of G. Also, for a state s we define an integer

$$
p(s):=\sum_{c \in[G]} s(c) \cdot \operatorname{sign}(c) .
$$

The defining relations for the Kauffman bracket $\left(A=t^{-1 / 4}, B=t^{1 / 4}, d=-t^{1 / 2}-t^{-1 / 2}\right)$ lead to the following expression for the Jones polynomial.

Theorem.

$$
J(K)=(-1)^{w(K)} t^{3 w(K) / 4} \sum_{s} t^{-p(s) / 4}\left(-t^{-1 / 2}-t^{1 / 2}\right)^{|s|-1}
$$

where the sum is taken over all 2^{n} states for G and $w(K)=\sum_{c \in[G]} \operatorname{sign}(c)$ is the writhe of K.
This formula can be used to extend the Jones polynomial to virtual knots.
Example. For the left trefoil knot 3_{1} we have the following Gauss diagram.

$w(G)=-3$

There are eight states for such a diagram. Here are the corresponding curves and numbers $|s|$, $p(s)$.

$|s|=2$ $p(s)=-3$

$|s|=2$
$p(s)=1$

$|s|=1$ $p(s)=-1$

$|s|=2$
$p(s)=1$

$|s|=1$
$p(s)=-1$

$|s|=2$
$p(s)=1$

$|s|=1$ $p(s)=-1$

$|s|=3$
$p(s)=3$

Therefore,

$$
\begin{aligned}
J\left(3_{1}\right)= & -t^{-9 / 4}\left(t^{3 / 4}\left(-t^{-1 / 2}-t^{1 / 2}\right)+3 t^{1 / 4}+3 t^{-1 / 4}\left(-t^{-1 / 2}-t^{1 / 2}\right)\right. \\
& \left.\quad+t^{-3 / 4}\left(-t^{-1 / 2}-t^{1 / 2}\right)^{2}\right) \\
= & -t^{-9 / 4}\left(-t^{1 / 4}-t^{5 / 4}-3 t^{-3 / 4}+t^{-3 / 4}\left(t^{-1}+2+t\right)\right) \\
= & t^{-1}+t^{-3}-t^{-4}
\end{aligned}
$$

References

[Po] M. Polyak, Minimal sets of Reidemeister moves, Quantum Topology 1 (2010) 399-411.
[Zul] L. Zulli, A matrix for computing the Jones polynomial of a knot, Topology 34 (1995) 717-729.

