Tutte Polynomial of Signed Graphs and its Categorification

A. Krieger B. O'Connor

The Ohio State University

August 9, 2013

Signed Graphs

Definition

A signed graph $\Sigma = (\Gamma, \sigma)$ is a graph $\Gamma = (V, E)$ and a signature $\sigma \colon E \to \{\pm 1\}$.

Balance

Definition

The sign of a walk
$$W = \{e_1, e_2, \dots, e_k\}$$
 is $\sigma(W) = \sigma(e_1)\sigma(e_2)\dots\sigma(e_k)$.

Balance

Definition

The sign of a walk
$$W = \{e_1, e_2, \dots, e_k\}$$
 is $\sigma(W) = \sigma(e_1)\sigma(e_2)\dots\sigma(e_k)$.

Definition

A component W of a signed graph Σ is called balanced if the sign of each cycle of W is 1. A signed graph Σ is called balanced if each component of W is balanced.

Signed Colorings

Definition

A k-coloring of a signed graph Σ is a function

 $\gamma \colon V \to \{0, \pm 1, \pm 2, \dots, \pm k\}$. We may exclude 0, and we will call such colorings zero-free colorings.

Signed Colorings

Definition

A k-coloring of a signed graph Σ is a function $\gamma \colon V \to \{0, \pm 1, \pm 2, \dots, \pm k\}$. We may exclude 0, and we will call such colorings zero-free colorings.

Definition

A coloring of a signed graph Σ is called proper if for every edge $e = \{v, w\} \in E$, $\gamma(v)\sigma(e) \neq \gamma(w)$.

Coloring

Definition

A switching function for a signed graph Σ is a function $\zeta\colon V\to \{\pm 1\}$. The switched signature σ^ζ is defined by $\sigma^\zeta(e)=\zeta(v)\sigma(e)\zeta(w)$, where the edge e has endpoints v and w, and the switched signed graph is $\Sigma^\zeta=(\Gamma,\sigma^\zeta)$. The switched coloring γ^ζ is defined by $\gamma^\zeta(v)=\gamma(v)\zeta(v)$.

Coloring

Definition

A switching function for a signed graph Σ is a function $\zeta\colon V\to\{\pm 1\}$. The switched signature σ^ζ is defined by $\sigma^\zeta(e)=\zeta(v)\sigma(e)\zeta(w)$, where the edge e has endpoints v and w, and the switched signed graph is $\Sigma^\zeta=(\Gamma,\sigma^\zeta)$. The switched coloring γ^ζ is defined by $\gamma^\zeta(v)=\gamma(v)\zeta(v)$.

Proposition

Switching does not alter the balance of cycles or the set of properly colored edges of a coloration.

Switching Classes

Definition

Say $\Sigma \sim \Sigma'$ if there is a switching function ζ such that $\Sigma^\zeta = \Sigma'$.

Switching Classes

Definition

Say $\Sigma \sim \Sigma'$ if there is a switching function ζ such that $\Sigma^{\zeta} = \Sigma'$.

Proposition

The relation \sim defined above is an equivalence relation. We will refer to the equivalences classes of \sim as the switching classes of a signed graph Σ .

Contractions

When contracting an edge e in a signed graph, if e is negative (and not a loop), first switch the graph so that e is positive. Then contract the edge as usual.

Contractions

When contracting an edge e in a signed graph, if e is negative (and not a loop), first switch the graph so that e is positive. Then contract the edge as usual.

Proposition

The resulting switching class of a contraction is unique.

We define two chromatic polynomials for a signed graph Σ .

We define two chromatic polynomials for a signed graph Σ .

Definition

Full Chromatic Polynomial

$$\chi_{\Sigma}(2k+1)=\#$$
 proper k-colorings of Σ

We define two chromatic polynomials for a signed graph Σ .

Definition

Full Chromatic Polynomial

$$\chi_{\Sigma}(2k+1) = \#$$
 proper k-colorings of Σ

Definition

Zero-free Chromatic Polynomial

$$\chi_{\Sigma}^*(2k)=\#$$
 proper zero-free k-colorings of Σ

We define two chromatic polynomials for a signed graph Σ .

Definition

Full Chromatic Polynomial

$$\chi_{\Sigma}(2k+1) = \#$$
 proper k-colorings of Σ

Definition

Zero-free Chromatic Polynomial

$$\chi_{\Sigma}^*(2k)=\#$$
 proper zero-free k-colorings of Σ

Of course, from the definitions it is not obvious that these are, in fact, polynomials.

Deletion-Contraction Properties of χ_{Σ} and χ_{Σ}^*

Deletion-Contraction Properties

•
$$\chi_{\Sigma} = \chi_{\Sigma \backslash e} - \chi_{\Sigma / e}$$

$$\bullet \ \chi_{\Sigma}^* = \chi_{\Sigma \backslash e}^* - \chi_{\Sigma / e}^*$$

•
$$\chi_{\Sigma}^* = \chi_{\Sigma/e}^*$$

Matroid Structure

Given a subset of edges $F \subseteq E$ of a signed graph $\Sigma = (V, E, \sigma)$, we will identify F with the spanning subgraph $(V, F, \sigma|_F)$.

Matroid Structure

Given a subset of edges $F \subseteq E$ of a signed graph $\Sigma = (V, E, \sigma)$, we will identify F with the spanning subgraph $(V, F, \sigma|_F)$.

Definition

- k(F) = # components of F
- b(F) = # balanced components of F
- u(F) = # unbalanced components of F = k(F) b(F)
- r(F) = |V| b(F)
- n(F) = |F| r(F)

Matroid Structure

Given a subset of edges $F \subseteq E$ of a signed graph $\Sigma = (V, E, \sigma)$, we will identify F with the spanning subgraph $(V, F, \sigma|_F)$.

Definition

- k(F) = # components of F
- b(F) = # balanced components of F
- u(F) = # unbalanced components of F = k(F) b(F)
- r(F) = |V| b(F)
- n(F) = |F| r(F)

The function r(F) is a rank function that gives a matroid structure to the edge set of a signed graph (the function n(F) is the nullity).

Chromatic Expansion Formulas

The chromatic polynomials of a signed graph have the following subgraph expansion formulas:

Chromatic Expansion Formulas

The chromatic polynomials of a signed graph have the following subgraph expansion formulas:

Theorem

$$\chi_{\Sigma}(\lambda) = \sum_{F \subseteq E} (-1)^{|F|} \lambda^{b(F)}$$

Chromatic Expansion Formulas

The chromatic polynomials of a signed graph have the following subgraph expansion formulas:

Theorem

$$\chi_{\Sigma}(\lambda) = \sum_{F \subset E} (-1)^{|F|} \lambda^{b(F)}$$

Theorem

$$\chi_{\Sigma}^{*}(\lambda) = \sum_{\substack{F \subseteq E \\ F \text{ balanced}}} (-1)^{|F|} \lambda^{b(F)}$$

Tutte Polynomial

Definition

Tutte Polynomial (of a signed graph Σ):

$$T_{\Sigma}(x,y) = \sum_{E \subset E} (x-1)^{r(E)-r(F)} (y-1)^{n(F)}$$

Signed Tutte Polynomial

We introduce the following generalization.

Definition

Signed Tutte Polynomial

$$T_{\Sigma}(x,y,z) = \sum_{F \subseteq E} (x-1)^{r(E)-r(F)} (y-1)^{n(F)} (z-1)^{u(F)}$$

Signed Tutte Polynomial

We introduce the following generalization.

Definition

Signed Tutte Polynomial

$$T_{\Sigma}(x,y,z) = \sum_{F \subset E} (x-1)^{r(E)-r(F)} (y-1)^{n(F)} (z-1)^{u(F)}$$

An equivalent form is given by the following polynomial.

Definition

$$\widetilde{T}_{\Sigma}(x,y,z) = \sum_{F \subset F} (-1)^{|F|} (1+x)^{b(F)} (1+y)^{n(F)} (1+z)^{u(F)}$$

Deletion-Contraction Properties of $T_{\Sigma}(x, y, z)$

Deletion-Contraction Properties

•
$$T_{\Sigma} = T_{\Sigma \setminus e} + T_{\Sigma / e}$$

•
$$T_{\Sigma} = xT_{\Sigma \setminus e}$$

•
$$T_{\Sigma} = yT_{\Sigma/e}$$

•
$$T_{\Sigma}(x,y,2) = T_{\Sigma}(x,y)$$

•
$$T_{\Sigma}(x,y,2) = T_{\Sigma}(x,y)$$

•
$$(-1)^{r(E)}(1-x)^{-b(E)}T_{\Sigma}(-x,-y,z+2) = \widetilde{T}_{\Sigma}(x,y,z)$$

•
$$T_{\Sigma}(x,y,2) = T_{\Sigma}(x,y)$$

•
$$(-1)^{r(E)}(1-x)^{-b(E)}T_{\Sigma}(-x,-y,z+2) = \widetilde{T}_{\Sigma}(x,y,z)$$

•
$$(x-1)^{-u(E)} T_{\Sigma}(x,y,(x-1)(y-1)+1) = T_{\Gamma}(x,y)$$

•
$$T_{\Sigma}(x,y,2) = T_{\Sigma}(x,y)$$

•
$$(-1)^{r(E)}(1-x)^{-b(E)}T_{\Sigma}(-x,-y,z+2) = \widetilde{T}_{\Sigma}(x,y,z)$$

•
$$(x-1)^{-u(E)} T_{\Sigma}(x,y,(x-1)(y-1)+1) = T_{\Gamma}(x,y)$$

•
$$\widetilde{T}_{\Sigma}(\lambda-1,0,0)=\chi_{\Sigma}(\lambda)$$

•
$$T_{\Sigma}(x,y,2) = T_{\Sigma}(x,y)$$

•
$$(-1)^{r(E)}(1-x)^{-b(E)}T_{\Sigma}(-x,-y,z+2) = \widetilde{T}_{\Sigma}(x,y,z)$$

•
$$(x-1)^{-u(E)} T_{\Sigma}(x,y,(x-1)(y-1)+1) = T_{\Gamma}(x,y)$$

•
$$\widetilde{T}_{\Sigma}(\lambda-1,0,0)=\chi_{\Sigma}(\lambda)$$

•
$$\widetilde{T}_{\Sigma}(\lambda-1,0,-1)=\chi_{\Sigma}^*(\lambda)$$

Categorifying the Signed Tutte Polynomial

Our original polynomial:

$$T_{\Sigma}(x,y,z) = \sum_{F \subset E} (x-1)^{r(E)-r(F)} (y-1)^{n(F)} (z-1)^{u(F)}$$

Categorifying the Signed Tutte Polynomial

Our original polynomial:

$$T_{\Sigma}(x,y,z) = \sum_{F \subseteq E} (x-1)^{r(E)-r(F)} (y-1)^{n(F)} (z-1)^{u(F)}$$

• By change of variables and rearranging:

$$\widetilde{T}_{\Sigma}(x, y, z) = \sum_{F \subseteq E} (-1)^{|F|} (x+1)^{b(F)} (y+1)^{n(F)} (z+1)^{u(F)}$$

Chain groups

We use truncated polynomial algebras

$$\mathcal{A} = \mathbb{Q}[a]/(a^2), \ \mathcal{B} = \mathbb{Q}[b]/(b^2), \ \mathcal{C} = \mathbb{Q}[c]/(c^2)$$

• For each $F \subseteq E(G)$, define $C_F = \mathcal{A}^{\otimes b(F)} \otimes \mathcal{B}^{\otimes n(F)} \otimes \mathcal{C}^{\otimes u(F)}$

Chain groups

We use truncated polynomial algebras

$$\mathcal{A} = \mathbb{Q}[a]/(a^2), \ \mathcal{B} = \mathbb{Q}[b]/(b^2), \ \mathcal{C} = \mathbb{Q}[c]/(c^2)$$

- For each $F \subseteq E(G)$, define $C_F = \mathcal{A}^{\otimes b(F)} \otimes \mathcal{B}^{\otimes n(F)} \otimes \mathcal{C}^{\otimes u(F)}$
- Each balanced component is labelled with 1 or a

Chain groups

We use truncated polynomial algebras

$$\mathcal{A} = \mathbb{Q}[a]/(a^2), \ \mathcal{B} = \mathbb{Q}[b]/(b^2), \ \mathcal{C} = \mathbb{Q}[c]/(c^2)$$

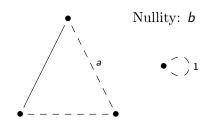
- For each $F \subseteq E(G)$, define $C_F = \mathcal{A}^{\otimes b(F)} \otimes \mathcal{B}^{\otimes n(F)} \otimes \mathcal{C}^{\otimes u(F)}$
- Each balanced component is labelled with 1 or a
- Each unbalanced component is labelled with 1 or c

Chain groups

We use truncated polynomial algebras

$$\mathcal{A} = \mathbb{Q}[a]/(a^2), \ \mathcal{B} = \mathbb{Q}[b]/(b^2), \ \mathcal{C} = \mathbb{Q}[c]/(c^2)$$

- For each $F \subseteq E(G)$, define $C_F = \mathcal{A}^{\otimes b(F)} \otimes \mathcal{B}^{\otimes n(F)} \otimes \mathcal{C}^{\otimes u(F)}$
- Each balanced component is labelled with 1 or a
- Each unbalanced component is labelled with 1 or c



This gives the vector

$$a \otimes b \otimes 1_{\mathcal{C}} \in C_{\mathcal{F}} = \mathcal{A} \otimes \mathcal{B} \otimes \mathcal{C}$$

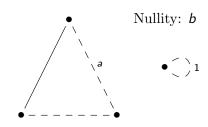
Chain groups

We use truncated polynomial algebras

$$\mathcal{A} = \mathbb{Q}[a]/(a^2), \ \mathcal{B} = \mathbb{Q}[b]/(b^2), \ \mathcal{C} = \mathbb{Q}[c]/(c^2)$$

- For each $F \subseteq E(G)$, define $C_F = \mathcal{A}^{\otimes b(F)} \otimes \mathcal{B}^{\otimes n(F)} \otimes \mathcal{C}^{\otimes u(F)}$
- Each balanced component is labelled with 1 or a
- Each unbalanced component is labelled with 1 or c
- Our chain groups are

$$C^{i} = \bigoplus_{\substack{F \subseteq E \\ |F| = i}} C_{F}$$



This gives the vector

$$a \otimes b \otimes 1_{\mathcal{C}} \in C_{\mathcal{F}} = \mathcal{A} \otimes \mathcal{B} \otimes \mathcal{C}$$

Graded spaces and q-dim

The degree of a simple tensor $\mathbf{a} = a_1 \otimes \cdots \otimes a_n \in \mathcal{A}^{\otimes n}$, $a_i \in \{1, a\}$, is the number of occurrences of a in the n-tuple (a_1, \ldots, a_n) , and likewise for simple tensors in $\mathcal{B}^{\otimes n}$ and $\mathcal{C}^{\otimes n}$.

Graded spaces and q-dim

The degree of a simple tensor $\mathbf{a} = a_1 \otimes \cdots \otimes a_n \in \mathcal{A}^{\otimes n}$, $a_i \in \{1, a\}$, is the number of occurrences of a in the n-tuple (a_1, \ldots, a_n) , and likewise for simple tensors in $\mathcal{B}^{\otimes n}$ and $\mathcal{C}^{\otimes n}$.

Definition

For a triply graded vector space $V = \bigoplus_{i,j,k \in \mathbb{Z}} V_{i,j,k}$, where $V_{i,j,k}$ is the subspace generated by all vectors of \mathcal{A} -degree i, \mathcal{B} -degree j, and \mathcal{C} -degree k,

$$q$$
-dim $V = \sum_{i,j,k \in \mathbb{Z}} x^i y^j z^k$ dim $V_{i,j,k}$

Graded spaces and q-dim

The degree of a simple tensor $\mathbf{a} = a_1 \otimes \cdots \otimes a_n \in \mathcal{A}^{\otimes n}$, $a_i \in \{1, a\}$, is the number of occurrences of a in the n-tuple (a_1, \ldots, a_n) , and likewise for simple tensors in $\mathcal{B}^{\otimes n}$ and $\mathcal{C}^{\otimes n}$.

Definition

For a triply graded vector space $V = \bigoplus_{i,j,k \in \mathbb{Z}} V_{i,j,k}$, where $V_{i,j,k}$ is the subspace generated by all vectors of \mathcal{A} -degree i, \mathcal{B} -degree j, and \mathcal{C} -degree k, q-dim $V = \sum_{i,j,k \in \mathbb{Z}} x^i y^j z^k \dim V_{i,j,k}$

Example: q-dim $\mathcal{A} = 1 + x$, q-dim $\mathcal{B} \oplus \mathcal{C} = 2 + y + z$, and q-dim $\mathcal{A} \otimes \mathcal{C} = (1 + x)(1 + z)$.

Boundary maps

• To complete our homology we define boundary maps from each C_i to C_{i+1} . These maps must respect the triple grading.

Boundary maps

- To complete our homology we define boundary maps from each C_i to C_{i+1} . These maps must respect the triple grading.
- We define the boundary maps from C_F to $C_{F \cup \{e\}}$ ($e \notin F$) based on the labelled graph components. These induce the boundary maps from C_i to C_{i+1} .

Boundary maps

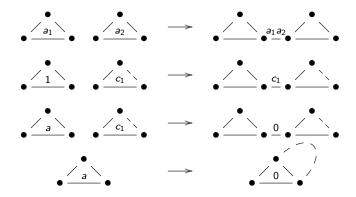
- To complete our homology we define boundary maps from each C_i to C_{i+1} . These maps must respect the triple grading.
- We define the boundary maps from C_F to $C_{F \cup \{e\}}$ ($e \notin F$) based on the labelled graph components. These induce the boundary maps from C_i to C_{i+1} .
- We look at what happens when we add the edge e to the subgraph F.

 If adding e doesn't change a balanced component (or adds an edge without adding any vertices or unbalancing), the label stays the same.

- If adding e doesn't change a balanced component (or adds an edge without adding any vertices or unbalancing), the label stays the same.
- If e joins balanced components with labels a_1 , a_2 , the resulting component has label a_1a_2 .

- If adding e doesn't change a balanced component (or adds an edge without adding any vertices or unbalancing), the label stays the same.
- If e joins balanced components with labels a_1 , a_2 , the resulting component has label a_1a_2 .
- If a balanced component with label 1 joins an unbalanced component with label c_1 , the resulting (unbalanced) component has label c_1 . If the balanaced component had label a, the resulting label is 0.

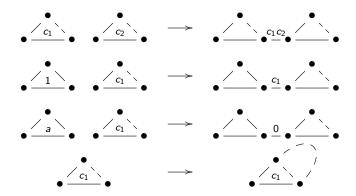
- If adding e doesn't change a balanced component (or adds an edge without adding any vertices or unbalancing), the label stays the same.
- If e joins balanced components with labels a_1 , a_2 , the resulting component has label a_1a_2 .
- If a balanced component with label 1 joins an unbalanced component with label c_1 , the resulting (unbalanced) component has label c_1 . If the balanaced component had label a, the resulting label is 0.
- If adding e causes a component K to become unbalanced, a label of $1 \in \mathcal{A}$ maps to $1 \in \mathcal{C}$, and a maps to 0.



• Likewise, if two unbalanced components are joined, their labels multiply.

- Likewise, if two unbalanced components are joined, their labels multiply.
- If an unbalanced component is joined with a balanced component with label 1, the label is preserved; if the balanced component has label a, the label is sent to 0.

- Likewise, if two unbalanced components are joined, their labels multiply.
- If an unbalanced component is joined with a balanced component with label 1, the label is preserved; if the balanced component has label a, the label is sent to 0.
- If an unbalanced component is unchanged or only an edge is added (no vertices), its label is unchanged.



Boundary maps: Final details

• Whenever the nullity of $F \cup \{e\}$ is greater than n(F), the boundary map on the \mathcal{B} part of C_F sends $\mathbf{b} \in \mathcal{B}^{\otimes n(F)}$ to $\mathbf{b} \otimes 1 \in \mathcal{B}^{\otimes n(F \cup \{e\})}$.

Boundary maps: Final details

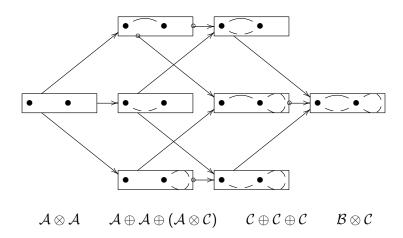
- Whenever the nullity of $F \cup \{e\}$ is greater than n(F), the boundary map on the \mathcal{B} part of C_F sends $\mathbf{b} \in \mathcal{B}^{\otimes n(F)}$ to $\mathbf{b} \otimes 1 \in \mathcal{B}^{\otimes n(F \cup \{e\})}$.
- Finally, some of the maps $C_F \to C_{F \cup \{e\}}$ must be negated to ensure that $d_{n+1} \circ d_n = 0$ for all boundary maps d_n .

Boundary maps: Final details

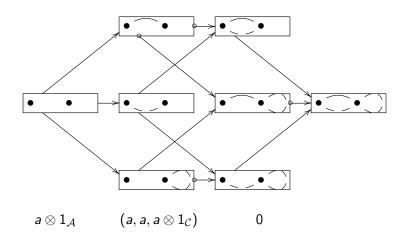
- Whenever the nullity of $F \cup \{e\}$ is greater than n(F), the boundary map on the \mathcal{B} part of C_F sends $\mathbf{b} \in \mathcal{B}^{\otimes n(F)}$ to $\mathbf{b} \otimes 1 \in \mathcal{B}^{\otimes n(F \cup \{e\})}$.
- Finally, some of the maps $C_F \to C_{F \cup \{e\}}$ must be negated to ensure that $d_{n+1} \circ d_n = 0$ for all boundary maps d_n .
- The Euler characteristic of our homology is

$$\begin{split} &\sum_{i=0}^{\infty} (-1)^i \ q\text{-dim} \ H^i = \sum_{i=0}^{\infty} (-1)^i \ q\text{-dim} \ C^i \\ &= \sum_{F \subset F} (-1)^{|F|} (x+1)^{b(F)} (y+1)^{n(F)} (z+1)^{u(F)} = \widetilde{T}_{\Sigma}(x,y,z) \end{split}$$

Example of the Signed Tutte Homology



Example of the Signed Tutte Homology



Signed Chromatic Homologies

Recall

$$\chi_{\Sigma}(2k+1) = \sum_{F \subseteq E} (-1)^{|F|} \lambda^{b(F)}$$
$$\chi_{\Sigma}^{*}(2k) = \sum_{\substack{F \subseteq E \\ \text{F balanced}}} (-1)^{|F|} \lambda^{b(F)}$$

Corresponding to these two chromatic polynomials, there are two signed chromatic homologies, defined similarly to our signed Tutte homology.

Full Chromatic Homology

 The full chromatic homology is a "sub-homology" - each chain group is (isomorphic to) a subspace of a corresponding chain group from our signed Tutte homology.

Full Chromatic Homology

- The full chromatic homology is a "sub-homology" each chain group is (isomorphic to) a subspace of a corresponding chain group from our signed Tutte homology.
- The full chromatic homology has chain groups built from $Ch_F = \mathcal{A}^{\otimes b(F)}$. Compare to our Tutte chain groups $C_F = \mathcal{A}^{\otimes b(F)} \otimes \mathcal{B}^{\otimes n(F)} \otimes \mathcal{C}^{\otimes u(F)}$.

Full Chromatic Homology

- The full chromatic homology is a "sub-homology" each chain group is (isomorphic to) a subspace of a corresponding chain group from our signed Tutte homology.
- The full chromatic homology has chain groups built from $Ch_F = \mathcal{A}^{\otimes b(F)}$. Compare to our Tutte chain groups $C_F = \mathcal{A}^{\otimes b(F)} \otimes \mathcal{B}^{\otimes n(F)} \otimes \mathcal{C}^{\otimes u(F)}$.
- Moreover, the restriction of the Tutte boundary maps gives the chromatic boundary maps

Zero-Free Chromatic Homology

• The zero-free chromatic homology is built from spaces Ch_F^* , which are $\mathcal{A}^{\otimes b(F)}$ when F is balanced, and the zero vector space when F is unbalanced.

Zero-Free Chromatic Homology

- The zero-free chromatic homology is built from spaces Ch_F^* , which are $\mathcal{A}^{\otimes b(F)}$ when F is balanced, and the zero vector space when F is unbalanced.
- Similar to the full chromatic homology, this appears as a quotient of the signed Tutte homology.

Knot theory

 We had hoped to connect the signed Tutte polynomial and homology to the Jones polynomial and Khovanov homology in knot theory

Knot theory

- We had hoped to connect the signed Tutte polynomial and homology to the Jones polynomial and Khovanov homology in knot theory
- In particular, we hoped to expand Thistlethwaite result connecting the Jones polynomial of alternating knots and the Tutte polynomial for ordinary graphs to general knots and signed graphs.

Knot theory

- We had hoped to connect the signed Tutte polynomial and homology to the Jones polynomial and Khovanov homology in knot theory
- In particular, we hoped to expand Thistlethwaite result connecting the Jones polynomial of alternating knots and the Tutte polynomial for ordinary graphs to general knots and signed graphs.
- This polynomial failed in that regard, and there was no immediate connection to the Khovanov homology