Dual representable matroids

Let $E = \{v_1, \ldots, v_n\}$ be a collection of vectors in a vector space U and M be a matroid of their linear dependences. Consider an *n*-dimensional vector space V with a basis e_1, \ldots, e_n and a linear map $f: V \to U$ sending e_k to v_k . Denote the kernel of this map by W. It is a subspace of V and there is a natural inclusion map $i: W \to V$. There is the dual map $W^* \xleftarrow{i^*} V^*$ of dual vector spaces. The space V^* has a natural dual basis e_1^*, \ldots, e_n^* . Their images $i^*(e_1^*), \ldots, i^*(e_n^*)$ is a collection of vectors in the space W^* . These vectors with the structure of linear dependences between them form the dual matroid M^* .

Δ -matroids [Bouchet]

Matroids	Δ -matroids
 A matroid is a pair M = (E, B) consisting of a finite set E and a nonempty collection B of its subsets, called bases, satisfying the axioms: (B1) No proper subset of a base is a base. (B2) =(Exchange axion) If B₁ and B₂ are bases and b₁ ∈ B₁ - B₂, then there is an element b₂ ∈ B₂ - B₁ such that (B₁ - b₁) ∪ b₂ is a base. 	A Δ -matroid is a pair $M = (E, \mathcal{F})$ con- sisting of a finite set E and a nonempty collection \mathcal{F} of its subsets, called <i>feasible</i> sets, satisfying the Symmetric Exchange axion If F_1 and F_2 are two feasible sets and $f_1 \in F_1 \Delta F_2$, then there is an element $f_2 \in F_1 \Delta F_2$ such that $F_1 \Delta \{f_1, f_2\}$ is a feasible set.

Ribbon graphs (graphs on surfaces)

Definition. A ribbon graph G is a surface (possibly non-orientable) with boundary, represented as the union of two sets of closed topological discs called vertices V(G) and edges E(G), satisfying the following conditions:

- these vertices and edges intersect by disjoint line segments;
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two such line segments.

Definition. A quasi-tree is ribbon graph G with a single boundary component, bc(G) = 1.

Theorem. Let G = (V, E) be a ribbon graph. Then $D(G) := (E, \{spanning quasi-trees\})$ is a Δ -matroid.

Let $D = (E, \mathcal{F})$ be a Δ -matroid and $e \in E$. e is a loop iff $\forall F \in \mathcal{F}, e \notin F$. If e is not a loop, $D/e := (E \setminus \{e\}, \{F \setminus \{e\} | F \in \mathcal{F}, e \in F\})$. If e is not a coloop, $D \setminus e := (E \setminus \{e\}, \{F | F \in \mathcal{F}, F \subset E \setminus \{e\}\})$.

Twists of Δ **-matroids.** Let $D = (E, \mathcal{F})$ be a Δ -matroids and $A \subset E$.

 $D * A := (E, \{F \Delta A | F \in \mathcal{F}\}).$

Dual Δ -matroid: $D^* := D * E$.

<u>Matroids associated with a Δ -matroid</u>

Let $D = (E, \mathcal{F})$ be a Δ -matroid.

 $D_{min} := (E, \mathcal{F}_{min})$, where $\mathcal{F}_{min} := \{F \in \mathcal{F} | F \text{ is of minimal possible cardinality}\}$. $D_{max} := (E, \mathcal{F}_{max})$, where $\mathcal{F}_{max} := \{F \in \mathcal{F} | F \text{ is of maximal possible cardinality}\}$. Facts.

- D_{min} and D_{max} are usual matroids. Width $w(D) := r(D_{max}) r(D_{min})$.
- $(D(G))_{min} = C(G).$ $(D(G))_{max} = (C(G^*))^*.$
- $D(G) = \mathcal{C}(G)$ iff G is a planar ribbon graph.

Matroid perspectives (M. Las Vergnas [LV])

Definition. Let M and M' be two matroid structures on the same ground set E. They form a matroid perspective $M \to M'$ if any circuit of M is a union of circuits of M'. Equivalently,

$$r_M(X) - r_M(Y) \ge r_{M'}(X) - r_{M'}(Y)$$
 for all $Y \subseteq X \subseteq E$.

Example.

For graphs G and G^* dually embedded in a surface, then the bond matroid of G^* and the circuit matroid of G form a matroid perspective, $\mathcal{B}(G^*) \to \mathcal{C}(G)$.

Lemma. For any Δ -matroid D, $D_{max} \rightarrow D_{min}$ is a matroid perspective.

Tutte like polynomials

The Las Vergnas polynomial ([LV]) of a matroid perspective $M \to M'$.

$$T_{M \to M'}(x, y, z) := \sum_{X \subseteq M} (x - 1)^{r_{M'}(E) - r_{M'}(X)} (y - 1)^{n_M(X)} z^{(r_M(E) - r_M(X)) - (r_{M'}(E) - r_{M'}(X))}$$

Properties. $T_M(x,y) = T_{M \to M}(x,y,z)$; $T_{M'}(x,y) = (y-1)^{r_M(E)-r_{M'}(E)}T_{M \to M'}(x,y,\frac{1}{y-1})$.

The Bollobás-Riordan polynomial ([BR]) of a ribbon graph G.

$$R_G(X, Y, Z) := \sum_{F \subseteq G} X^{r(G) - r(F)} Y^{n(F)} Z^{k(F) - \mathrm{bc}(F) + n(F)}$$

References

[BR] B. Bollobás and O. Riordan, A polynomial of graphs on surfaces, Math. Ann. 323 (2002) 81–96.

[Bouchet] A. Bouchet, Greedy algorithm and symmetric matroids, Math. Program. 38 (1987) 147-159.

[[]LV] M. Las Vergnas, On the Tutte polynomial of a morphism of matroids, Annals of Discrete Mathematics 8 (1980) 7–20.