Dual representable matroids

Let $E=\left\{v_{1}, \ldots, v_{n}\right\}$ be a collection of vectors in a vector space U and M be a matroid of their linear dependences. Consider an n-dimensional vector space V with a basis e_{1}, \ldots, e_{n} and a linear map $f: V \rightarrow U$ sending e_{k} to v_{k}. Denote the kernel of this map by W. It is a subspace of V and there is a natural inclusion map $i: W \hookrightarrow V$. There is the dual map $W^{*} \stackrel{i^{*}}{\leftarrow} V^{*}$ of dual vector spaces. The space V^{*} has a natural dual basis $e_{1}^{*}, \ldots, e_{n}^{*}$. Their images $i^{*}\left(e_{1}^{*}\right), \ldots, i^{*}\left(e_{n}^{*}\right)$ is a collection of vectors in the space W^{*}. These vectors with the structure of linear dependences between them form the dual matroid M^{*}.

Δ-matroids [Bouchet]

Matroids	Δ-matroids
A matroid is a pair $M=(E, \mathcal{B})$ consisting of a finite set E and a nonempty collection \mathcal{B} of its subsets, called bases, satisfying the axioms: (B1) No proper subset of a base is a base. $(\mathbf{B 2})=\left(\right.$ Exchange axion) If B_{1} and B_{2} are bases and $b_{1} \in B_{1}-B_{2}$, then there is an element $b_{2} \in B_{2}-$ B_{1} such that $\left(B_{1}-b_{1}\right) \cup b_{2}$ is a base.	$A \Delta$-matroid is a pair $M=(E, \mathcal{F})$ consisting of a finite set E and a nonempty collection \mathcal{F} of its subsets, called feasible sets, satisfying the Symmetric Exchange axion If F_{1} and F_{2} are two feasible sets and $f_{1} \in F_{1} \Delta F_{2}$, then there is an element $f_{2} \in F_{1} \Delta F_{2}$ such that $F_{1} \Delta\left\{f_{1}, f_{2}\right\}$ is a feasible set.

$\underline{\text { Ribbon graphs (graphs on surfaces) }}$

Definition. A ribbon graph G is a surface (possibly non-orientable) with boundary, represented as the union of two sets of closed topological discs called vertices $V(G)$ and edges $E(G)$, satisfying the following conditions:

- these vertices and edges intersect by disjoint line segments;
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two such line segments.

Definition. A quasi-tree is ribbon graph G with a single boundary component, $b c(G)=1$.

Examples.

Theorem. Let $G=(V, E)$ be a ribbon graph. Then $D(G):=(E,\{$ spanning quasi-trees $\})$ is a Δ-matroid.

Minors in Δ-matroids

Let $D=(E, \mathcal{F})$ be a Δ-matroid and $e \in E$.
e is a loop iff $\forall F \in \mathcal{F}, e \notin F$. $\quad e$ is a coloop iff $\forall F \in \mathcal{F}, e \in F$.
If e is not a loop, $D / e:=(E \backslash\{e\},\{F \backslash\{e\} \mid F \in \mathcal{F}, e \in F\})$.
If e is not a coloop, $D \backslash e:=(E \backslash\{e\},\{F \mid F \in \mathcal{F}, F \subset E \backslash\{e\}\})$.
Twists of Δ-matroids. Let $D=(E, \mathcal{F})$ be a Δ-matroids and $A \subset E$.

$$
D * A:=(E,\{F \Delta A \mid F \in \mathcal{F}\})
$$

Dual Δ-matroid: $D^{*}:=D * E$.

Matroids associated with a Δ-matroid

Let $D=(E, \mathcal{F})$ be a Δ-matroid.
$D_{\text {min }}:=\left(E, \mathcal{F}_{\text {min }}\right)$, where $\mathcal{F}_{\text {min }}:=\{F \in \mathcal{F} \mid F$ is of minimal possible cardinality $\}$.
$D_{\text {max }}:=\left(E, \mathcal{F}_{\text {max }}\right)$, where $\mathcal{F}_{\text {max }}:=\{F \in \mathcal{F} \mid F$ is of maximal possible cardinality $\}$.

Facts.

- $D_{\min }$ and $D_{\max }$ are usual matroids. Width $w(D):=r\left(D_{\max }\right)-r\left(D_{\min }\right)$.
- $(D(G))_{\min }=\mathcal{C}(G) . \quad(D(G))_{\max }=\left(\mathcal{C}\left(G^{*}\right)\right)^{*}$.
- $D(G)=\mathcal{C}(G)$ iff G is a planar ribbon graph.

Matroid perspectives (M. Las Vergnas [LV])
Definition. Let M and M^{\prime} be two matroid structures on the same ground set E. They form a matroid perspective $M \rightarrow M^{\prime}$ if any circuit of M is a union of circuits of M^{\prime}. Equivalently,

$$
r_{M}(X)-r_{M}(Y) \geqslant r_{M^{\prime}}(X)-r_{M^{\prime}}(Y) \quad \text { for all } \quad Y \subseteq X \subseteq E
$$

Example.

For graphs G and G^{*} dually embedded in a surface, then the bond matroid of G^{*} and the circuit matroid of G form a matroid perspective, $\mathcal{B}\left(G^{*}\right) \rightarrow \mathcal{C}(G)$.

Lemma. For any Δ-matroid $D, D_{\max } \rightarrow D_{\min }$ is a matroid perspective.

Tutte like polynomials

The Las Vergnas polynomial ([LV]) of a matroid perspective $M \rightarrow M^{\prime}$.

$$
T_{M \rightarrow M^{\prime}}(x, y, z):=\sum_{X \subseteq M}(x-1)^{r_{M^{\prime}}(E)-r_{M^{\prime}}(X)}(y-1)^{n_{M}(X)} z^{\left(r_{M}(E)-r_{M}(X)\right)-\left(r_{M^{\prime}}(E)-r_{M^{\prime}}(X)\right)}
$$

Properties. $T_{M}(x, y)=T_{M \rightarrow M}(x, y, z) ; \quad T_{M^{\prime}}(x, y)=(y-1)^{r_{M}(E)-r_{M^{\prime}}(E)} T_{M \rightarrow M^{\prime}}\left(x, y, \frac{1}{y-1}\right)$.
The Bollobás-Riordan polynomial ([BR]) of a ribbon graph G.

$$
R_{G}(X, Y, Z):=\sum_{F \subseteq G} X^{r(G)-r(F)} Y^{n(F)} Z^{k(F)-\mathrm{bc}(F)+n(F)}
$$

References

[BR] B. Bollobás and O. Riordan, A polynomial of graphs on surfaces, Math. Ann. 323 (2002) 81-96.
[Bouchet] A. Bouchet, Greedy algorithm and symmetric matroids, Math. Program. 38 (1987) 147-159.
[LV] M. Las Vergnas, On the Tutte polynomial of a morphism of matroids, Annals of Discrete Mathematics 8 (1980) 7-20.

