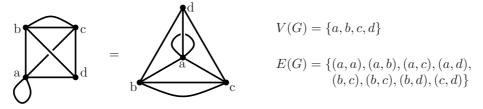
Graphs

Definition. A graph G is a finite set of vertices V(G) and a finite set E(G) of unordered pairs (x, y) of vertices $x, y \in V(G)$ called *edges*.

A graph may have *loops* (x, x) and *multiple edges* when a pair (x, y) appears in E(G) several times. Pictorially we represent the vertices by points and edges by lines connecting the corresponding points. Topologically a graph is a 1-dimensional cell complex with V(G) as the set of 0-cells and E(G) as the set of 1-cells. Here are two pictures representing the same graph.



Tutte polynomial

Chromatic polynomial $C_G(q)$.

A coloring of G with q colors is a map $c: V(G) \to \{1, \ldots, q\}$. A coloring c is proper if for any edge e: $c(v_1) \neq c(v_2)$, where v_1 and v_2 are the endpoints of e.

Definition 1. $C_G(q) := \#$ of proper colorings of G in q colors.

Properties (Definition 2). $C_G = C_{G-e} - C_{G/e} ;$ $C_{G_1\sqcup G_2}=C_{G_1}\cdot C_{G_2}, \quad \text{for a disjoint union } G_1\sqcup G_2 \ ;$ $C_{\bullet} = q$.

Flow polynomial $Q_G(q)$.

A q-flow on G is an assignment of a value $0, 1, \ldots, q-1$ to every edge of G with arbitrarily chosen orientation of its edges in such a way that the total flow entering and leaving each vertex is congruent modulo q.

Definition 1. $Q_G(q) := \#$ of nowhere-zero q-flows on G.

Properties (Definition 2).

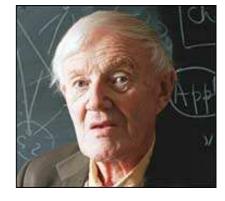
if G has a bridge ; $Q_G(q) = 0$ $Q_G(q) = (q-1)Q_{G-e}(q)$ if e is a loop; $Q_G(q) = -Q_{G-e}(q) + Q_{G/e}$ if e is neither a bridge nor a loop ; $Q_G(q) = C_{G^*}(q)/q$ for dual planar graphs G and G^* .

Tutte polynomial $T_G(x, y)$.

Definition 1.

 $T_G = T_{G-e} + T_{G/e}$ $T_G = xT_{G/e}$ $T_G = yT_{G-e}$ $T_{G_1 \sqcup G_2} = T_{G_1 \cdot G_2} = T_{G_1} \cdot T_{G_2}$ for a disjoint union $G_1 \sqcup G_2$

if e is neither a bridge nor a loop ; *if e is a bridge* ; if e is a loop; and a one-point join $G_1 \cdot G_2$;



 $T_{\bullet}=1$.

Properties.

 $\begin{array}{ll} T_G(1,1) & \text{is the number of spanning trees of } G \ ; \\ T_G(2,1) & \text{is the number of spanning forests of } G \ ; \\ T_G(1,2) & \text{is the number of spanning connected subgraphs of } G \ ; \\ T_G(2,2) = 2^{|E(G)|} & \text{is the number of spanning subgraphs of } G \ ; \\ C_G(q) = q^{k(G)}(-1)^{r(G)}T_G(1-q,0) \ ; \\ Q_G(q) = (-1)^{n(G)}T_G(0,1-q) \ . \end{array}$

Definition 2.

Let • F be a graph;

- v(F) be the number of its vertices;
- e(F) be the number of its edges;
- k(F) be the number of connected components of F;
- r(F) := v(F) k(F) be the *rank* of F;
- n(F) := e(F) r(F) be the *nullity* of F;

$$T_G(x,y) := \sum_{F \subseteq E(G)} (x-1)^{r(G)-r(F)} (y-1)^{n(F)}$$

Dichromatic polynomial $Z_G(q, v)$ (Definition 3).

Let Col(G) denote the set of colorings of G with q colors.

$$Z_G(q, v) := \sum_{c \in Col(G)} (1 + v)^{\text{\#} \text{ edges colored not properly by } c}$$

Properties .

 $\begin{array}{l} Z_G = Z_{G-e} + v Z_{G/e} \ ; \\ Z_{G_1 \sqcup G_2} = Z_{G_1} \cdot Z_{G_2} \ , \qquad \mbox{for a disjoint union } G_1 \sqcup G_2 \ ; \\ Z_{\bullet} = q \ ; \end{array}$

$$Z_G(q,v) = \sum_{F \subseteq E(G)} q^{k(F)} v^{e(F)}$$

 $C_G(q) == Z_G(q, -1) ;$

$$Z_G(q,v) = q^{k(G)}v^{r(G)}T_G(1+qv^{-1},1+v);$$

$$T_G(x,y) = (x-1)^{-k(G)}(y-1)^{-v(G)}Z_G((x-1)(y-1),y-1).$$

Potts model in statistical mechanics (Definition 4).

Potts model (C.Domb 1952); q = 2 the Ising model (W.Lenz, 1920)

Let G be a graph.

Particles are located at vertices of G. Each particle has a *spin*, which ______ takes q different values . A *state*, $\sigma \in S$, is an assignment of spins to all vertices of G. Neighboring particles interact with each other only is their ______ spins are the same.

The energy of the interaction along an edge e is $-J_e$ (coupling constant). The model is called ferromagnetic if $J_e > 0$ and antiferromagnetic if $J_e < 0$.

Energy of a state σ (*Hamiltonian*),

$$H(\sigma) = -\sum_{(a,b)=e \in E(G)} J_e \ \delta(\sigma(a), \sigma(b)).$$

Boltzmann weight of σ :

$$e^{-\beta H(\sigma)} = \prod_{\substack{(a,b)=e \in E(G)\\(a,b)=e \in E(G)}} e^{J_e \beta \delta(\sigma(a),\sigma(b))} = \prod_{\substack{(a,b)=e \in E(G)\\(a,b)=e \in E(G)}} \left(1 + (e^{J_e \beta} - 1)\delta(\sigma(a),\sigma(b)) \right),$$

where the *inverse temperature* $\beta = \frac{1}{\kappa T}$, T is the temperature, $\kappa = 1.38 \times 10^{-23}$ joules/Kelvin is the *Boltzmann constant*.

The Potts partition function (for $x_e := e^{J_e \beta} - 1$)

$$Z_G(q, x_e) := \sum_{\sigma \in \mathfrak{S}} e^{-\beta H(\sigma)} = \sum_{\sigma \in \mathfrak{S}} \prod_{e \in E(G)} (1 + x_e \delta(\sigma(a), \sigma(b)))$$

Properties of the Potts model Probability of a state σ : $P(\sigma) := e^{-\beta H(\sigma)}/Z_G$. Expected value of a function $f(\sigma)$:

$$\langle f \rangle := \sum_{\sigma} f(\sigma) P(\sigma) = \sum_{\sigma} f(\sigma) e^{-\beta H(\sigma)} / Z_G \; .$$

$$\begin{split} \text{Expected energy: } & \langle H \rangle = \sum_{\sigma} H(\sigma) e^{-\beta H(\sigma)} / Z_G = -\frac{d}{d\beta} \ln Z_G \ . \\ \text{Fortuin}\text{--Kasteleyn'1972: } & Z_G(q, x_e) = \sum_{F \subseteq E(G)} q^{k(F)} \prod_{e \in F} x_e \ , \end{split}$$

where k(F) is the number of connected components of the spanning subgraph F. $Z_G = Z_{G \setminus e} + x_e Z_{G/e}$.

Spanning tree generating function (Definition 5).

For a connected graph G fix an order of its edges: e_1, e_2, \ldots, e_m . Let T be a spanning tree.

An edge $e_i \in E(T)$ is called *internally active (live)* if i < j for any edge e_j connecting the two components of $T - e_i$

An edge $e_j \notin E(T)$ is called *externally active (live)* if j < i for any edge e_i in the unique cycle of $T \cup e_j$.

Let i(T) and j(T) be the numbers of internally and externally active edges correspondingly.

$$T_G(x,y) := \sum_T x^{i(T)} y^{j(T)}$$

Doubly weighted Tutte polynomial.

With each edge e of a graph G we associate two variables (weights) u_e and v_e .

$$T_G(\{u_e, v_e\}, x, y) := \sum_{F \subseteq E(G)} (\prod_{e \in F} u_e) (\prod_{e \notin F} v_e) (x-1)^{r(G)-r(F)} (y-1)^{n(F)}$$

Properties.

$$\begin{split} T_G &= v_e T_{G-e} + u_e T_{G/e} & \text{if } e \text{ is neither a bridge nor a loop }; \\ T_G &= (v_e (x-1) + u_e) T_{G/e} & \text{if } e \text{ is a bridge }; \\ T_G &= (v_e + (y-1) u_e) T_{G-e} & \text{if } e \text{ is a loop }; \\ T_{G_1 \sqcup G_2} &= T_{G_1 \cdot G_2} = T_{G_1} \cdot T_{G_2} & \text{for a disjoint union } G_1 \sqcup G_2 \\ & \text{and a one-point join } G_1 \cdot G_2 ; \\ T_{\bullet} &= 1 . \end{split}$$

Tutte polynomial of signed graphs.

Signed graph is a graphs with signs ± 1 assigned to the edges of the graph.

We define the Tutte polynomial of a signed graph by substituting the following weights to the doubly weighted Tutte polynomial.

+-edge:
$$u_e := 1$$
, $v_e := 1$; --edge: $u_e := \sqrt{\frac{x-1}{y-1}}$, $v_e := \sqrt{\frac{y-1}{x-1}}$

With this substitution the Tutte polynomial for signed graphs becomes

$$T_G(x,y) = \sum_{F \subseteq E(G)} (x-1)^{r(G)-r(F)+s(F)} (y-1)^{n(F)-s(F)} ,$$

for $s(F) := \frac{e_{-}(F) - e_{-}(E(G) \setminus F)}{2}$, where $e_{-}(S)$ stands for the number of negative edges of S.

Chromatic polynomial of signed graphs.

There are two chromatic polynomials of signed graphs.

A q-coloring of a signed G is a map $c: V(G) \rightarrow \{-q, -q+1, \ldots, -1, 0, 1, \ldots, q-1, q\}$. A q-coloring c is proper if for any edge e with the sign ε_e : $c(v_1) \neq \varepsilon c(v_2)$, where v_1 and v_2 are the endpoints of e.

Definition .

 $\begin{array}{l} C_G(2q+1):= \mbox{ $\#$ of proper q-colorings of G.}\\ C_G^{\neq 0}(2q):= \mbox{ $\#$ of proper q-colorings of G which take nonzero values.} \end{array}$

Properties.

- $C_G(\lambda)$ is a polynomial function of $\lambda = 2q + 1 > 0$; $C_G^{\neq 0}(\lambda)$ is a polynomial function of $\lambda = 2q > 0$; $C_G(\lambda) = C_{G-e}(\lambda) C_{G/e}(\lambda)$; $C_G^{\neq 0}(\lambda) = C_{G-e}^{\neq 0}(\lambda) C_{G/e}^{\neq 0}(\lambda)$;

- $C_{G_1 \sqcup G_2} = C_{G_1} \cdot C_{G_2}$ and $C_{G_1 \sqcup G_2}^{\neq 0} = C_{G_1}^{\neq 0} \cdot C_{G_2}^{\neq 0}$ for a disjoint union $G_1 \sqcup G_2$;
- $C_{\emptyset} = 1$.

Problems.

1. Express the chromatic polynomials of signed graphs it terms of the signed Tutte polynomial.

2. Make a definition of the flow polynomial for signed graphs and relate it to the signed Tutte polynomial.