Graphs

Definition. A graph G is a finite set of vertices V(G) and a finite set E(G) of unordered pairs (x, y) of vertices $x, y \in V(G)$ called *edges*.

A graph may have *loops* (x, x) and *multiple edges* when a pair (x, y) appears in E(G) several times. Pictorially we represent the vertices by points and edges by lines connecting the corresponding points. Topologically a graph is a 1-dimensional cell complex with V(G) as the set of 0-cells and E(G) as the set of 1-cells. Here are two pictures representing the same graph.

Tutte polynomial

Chromatic polynomial $C_G(q)$.

A coloring of G with q colors is a map $c: V(G) \to \{1, \ldots, q\}$. A coloring c is proper if for any edge e: $c(v_1) \neq c(v_2)$, where v_1 and v_2 are the endpoints of e.

Definition 1. $C_G(q) := \#$ of proper colorings of G in q colors.

Properties (Definition 2). $C_G = C_{G-e} - C_{G/e} ;$ $C_{G_1\sqcup G_2}=C_{G_1}\cdot C_{G_2}, \ \, \text{for a disjoint union } G_1\sqcup G_2\ ;$ $C_{\bullet} = q$.

Flow polynomial $Q_G(q)$.

A q-flow on G is an assignment of a value $0, 1, \ldots, q-1$ to every edge of G with arbitrarily chosen orientation of its edges in such a way that the total flow entering and leaving each vertex is congruent modulo q.

if e is neither a bridge nor a loop ;

and a one-point join $G_1 \cdot G_2$;

if e is a bridge ;

if e is a loop;

Definition 1. $Q_G(q) := \#$ of nowhere-zero q-flows on G.

Properties (Definition 2).

if G has a bridge ; $Q_G(q) = 0$ $Q_G(q) = (q-1)Q_{G-e}(q)$ if e is a loop; $Q_G(q) = -Q_{G-e}(q) + Q_{G/e}$ if e is neither a bridge nor a loop ; $Q_G(q) = C_{G^*}(q)/q$ for dual planar graphs G and G^* .

Tutte polynomial $T_G(x, y)$.

Definition 1.

 $T_G = T_{G-e} + T_{G/e}$ $T_G = xT_{G/e}$ $T_G = yT_{G-e}$ $T_{G_1 \sqcup G_2} = T_{G_1 \cdot G_2} = T_{G_1} \cdot T_{G_2}$ for a disjoint union $G_1 \sqcup G_2$

 $T_{\bullet}=1$.

Properties.

 $\begin{array}{ll} T_G(1,1) & \text{is the number of spanning trees of } G \ ; \\ T_G(2,1) & \text{is the number of spanning forests of } G \ ; \\ T_G(1,2) & \text{is the number of spanning connected subgraphs of } G \ ; \\ T_G(2,2) = 2^{|E(G)|} & \text{is the number of spanning subgraphs of } G \ ; \\ C_G(q) = q^{k(G)}(-1)^{r(G)}T_G(1-q,0) \ ; \\ Q_G(q) = (-1)^{n(G)}T_G(0,1-q) \ . \end{array}$

Definition 2.

Let • F be a graph;

- v(F) be the number of its vertices;
- e(F) be the number of its edges;
- k(F) be the number of connected components of F;
- r(F) := v(F) k(F) be the *rank* of F;
- n(F) := e(F) r(F) be the *nullity* of F;

$$T_G(x,y) := \sum_{F \subseteq E(G)} (x-1)^{r(G)-r(F)} (y-1)^{n(F)}$$

Dichromatic polynomial $Z_G(q, v)$ (Definition 3).

Let Col(G) denote the set of colorings of G with q colors.

Properties .

 $\begin{array}{l} Z_G = Z_{G-e} + v Z_{G/e} \ ; \\ Z_{G_1 \sqcup G_2} = Z_{G_1} \cdot Z_{G_2} \ , \qquad \mbox{for a disjoint union } G_1 \sqcup G_2 \ ; \\ Z_{\bullet} = q \ ; \end{array}$

$$Z_G(q,v) = \sum_{F \subseteq E(G)} q^{k(F)} v^{e(F)} ;$$

$$C_G(q) == Z_G(q, -1) ;$$

$$\begin{split} &Z_G(q,v) = q^{k(G)} v^{r(G)} T_G(1+qv^{-1},1+v) ; \\ &T_G(x,y) = (x-1)^{-k(G)} (y-1)^{-v(G)} Z_G((x-1)(y-1),y-1) . \end{split}$$

Potts model in statistical mechanics (Definition 4).

Potts model (C.Domb 1952); q = 2 the Ising model (W.Lenz, 1920)

Let G be a graph.

Particles are located at vertices of G. Each particle has a *spin*, which takes q different values . A *state*, $\sigma \in \mathcal{S}$, is an assignment of spins to all vertices of G. Neighboring particles interact with each other only is their spins are the same.

The energy of the interaction along an edge e is $-J_e$ (coupling constant). The model is called *ferromagnetic* if $J_e > 0$ and antiferromagnetic if $J_e < 0$.

Energy of a state σ (*Hamiltonian*),

$$H(\sigma) = -\sum_{(a,b)=e \in E(G)} J_e \ \delta(\sigma(a), \sigma(b)).$$

1

\

Boltzmann weight of σ :

$$e^{-\beta H(\sigma)} = \prod_{(a,b)=e\in E(G)} e^{J_e\beta\delta(\sigma(a),\sigma(b))} = \prod_{(a,b)=e\in E(G)} \left(1 + (e^{J_e\beta} - 1)\delta(\sigma(a),\sigma(b))\right),$$

where the *inverse temperature* $\beta = \frac{1}{\kappa T}$, T is the temperature, $\kappa = 1.38 \times 10^{-23}$ joules/Kelvin is the *Boltzmann constant*.

The Potts partition function (for $x_e := e^{J_e \beta} - 1$)

$$Z_G(q, x_e) := \sum_{\sigma \in \mathbb{S}} e^{-\beta H(\sigma)} = \sum_{\sigma \in \mathbb{S}} \prod_{e \in E(G)} (1 + x_e \delta(\sigma(a), \sigma(b)))$$

Properties of the Potts model Probability of a state σ : $P(\sigma) := e^{-\beta H(\sigma)}/Z_G$. Expected value of a function $f(\sigma)$:

$$\langle f \rangle := \sum_{\sigma} f(\sigma) P(\sigma) = \sum_{\sigma} f(\sigma) e^{-\beta H(\sigma)} / Z_G$$

Expected energy: $\langle H \rangle = \sum_{\sigma} H(\sigma) e^{-\beta H(\sigma)} / Z_G = -\frac{d}{d\beta} \ln Z_G$.

Fortuin—Kasteleyn'1972:
$$Z_G(q, x_e) = \sum_{F \subseteq E(G)} q^{k(F)} \prod_{e \in F} x_e$$
,

where k(F) is the number of connected components of the spanning subgraph F. $Z_G = Z_{G \setminus e} + x_e Z_{G/e}$.

Spanning tree generating function (Definition 5).

For a connected graph G fix an order of its edges: e_1, e_2, \ldots, e_m . Let T be a spanning tree.

An edge $e_i \in E(T)$ is called *internally active (live)* if i < j for any edge e_j connecting the two components of $T - e_i$

An edge $e_j \notin E(T)$ is called *externally active (live)* if j < i for any edge e_i in the unique cycle of $T \cup e_j$.

Let i(T) and j(T) be the numbers of internally and externally active edges correspondingly.

$$T_G(x,y) := \sum_T x^{i(T)} y^{j(T)}$$