Knots and Graphs Working Group [Summer 2018] MATH 4193, class number 17324 Instructor: Sergei Chmutov

RESEARCH PROJECTS

Project 1. Quandles. (Will Hoffer, Adu Vengal, Vilas Winstein)

This is a continuation of the last year project. It deals with *skein relation* type invariants of knots colored in a few colors. It was based on the paper [Yang]. Last year we found a new link invariant with values in the finite field \mathbb{F}_8 associated with a bicoloring of a link diagram. For tricoloring of diagrams, we found an invariant with values in a finite ring of 27 elements.

This year we are going to work on generalization of our results to link diagrams colored by an arbitrary *quandle*, that is an object from abstract algebra[EN]. Possibly we will come to work with quandle cocycle invariants.

Project 2. Symmetric Tutte polynomial and knots. (Jake Huryn, Neng Wang)

Classical Thistlethwaite's theorem [Th] claims that the Jones polynomial of a link is equal to a specialization of the Tutte polynomial of a graph constructed from a link diagram. A good reference about the Jones polynomial is [Ad, Ch.6]. The first reading about Thistlethwaite's theorem is [Ka1] with the subsequent reference [Ka2].

The Tutte polynomial is a generalization of the chromatic polynomial of a graph. There is a multivariable generalization of the chromatic polynomial, *Stanley's chromatic symmetric function* [St1]. Later R. Stanley gave [St2] a symmetric generalization of the Tutte polynomial, see also [NW].

The goal of the project is look whether any specialization of the symmetric Tutte polynomial can provide a link invariant. This project may be related to the next one.

Project 3. Symmetric chromatic polynomial of signed graphs. (James Enouen, Eric Fawcett, Rushil Raghavan, Ishaan Shah)

Signed graphs are usual graphs with signs \pm assigned to its edges. These graphs are naturally appear in relation to knot theory. There are two generalizations of the chromatic polynomial to signed graphs [Z1, Z2]. The goal of the project is to try to find a symmetric generalization of these polynomials in sense of R. Stanley [St1] from previous project. The hope is that it might be B_n -type symmetric function invariant under signed permutations.

Project 4. <u>Reidemeister moves of virtual knots.</u> (John Beck, Jack DePascale, Megan Fava, Juhee Park)

Recently M.-J. Jeong [Jeo] found a polynomial constructed from a Gauss diagram of a virtual knot which changes under the Reidemeiset moves in a very special way. This allows to use use this polynomial for estimating the number of Reidemeister moves from one diagram of a knot to another one. We are going to study this paper, try to improve the estimates and try to generalize it for links.

References

- [Ad] C. Adams, The knot book, AMS, 2001.
- [EN] M. Elhamdadi, S.Nelson, Quandles. An introduction to the algebra of knots, AMS, 2015.
- [Jeo] M.-J. Jeong, *Reidemeister moves and a polynomial of virtual knot diagrams*, Journal of Knot Theory and its Ramifications, **24**(2) (2015) 1550010 (16 pages).
- [Ka1] L. H. Kauffman, New invariants in knot theory, Amer. Math. Monthly 95 (1988) 195-242.
- [Ka2] L. H. Kauffman, A Tutte polynomial for signed graphs, Discrete Appl. Math. 25 (1989) 105-127.
- [NW] S. Noble, D. Welsh, A weighted graph polynomial from chromatic invariants of knots, Annales de l'institut Fourier **49**(3) (1999) 1057–1087.
- [St1] R. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, Advances in Math. 111(1) (1995) 166–194.
- [St2] R. Stanley, Graph colorings and related symmetric functions: ideas and applications, Discrete Mathematics 193 (1998) 267-286.
- [Th] M. Thistlethwaite, A spanning tree expansion for the Jones polynomial, Topology 26 (1987) 297–309.
- [Yang] M. Yang, Enhanced Kauffman bracket, Preprint arXiv: 1702.03391v1 [math.GT].
- [Z1] T. Zaslavsky Signed graph coloring, Discrete Math., 39 (1982) 215–228.
- [Z2] T. Zaslavsky Chromatic invariants of signed graphs, Discrete Math., 42 (1982) 287–312.