

A Symmetric Chromatic Function for Signed Graphs

Rushil Raghavan

The Ohio State University

10.19.2019

Chromatic Polynomial

Proper Colorings

Given a graph G a *proper coloring* of G by A is a function $f : G \rightarrow A$ such that for all pairs of adjacent vertices v, w , $f(v) \neq f(w)$.

Chromatic Polynomial

Given a graph G , define the *chromatic polynomial* by $\chi_G(q) =$ the number of proper colorings of G by $\{1, 2, \dots, q\}$.

Symmetric Chromatic Function

Symmetric Chromatic Function (Stanley, 1995)

$$X_G(x_1, x_2, \dots) := \sum_{\substack{\kappa: V(G) \rightarrow \mathbb{N} \\ \text{proper}}} \prod_{v \in V(G)} x_{\kappa(v)}$$

Alternatively,

$$X_G(x_1, x_2, \dots) = \sum_{\substack{\kappa: V(G) \rightarrow \mathbb{N} \\ \text{all}}} \prod_{v \in V(G)} x_{\kappa(v)} \prod_{e=(v_1, v_2) \in E(G)} (1 - \delta_{\kappa(v_1), \kappa(v_2)})$$

X_G is invariant under permutations of the indices.

If $G = \bullet - \bullet - \bullet$, then

$$X_G = \sum_{i, j, k \text{ distinct}} x_i x_j x_k + \sum_{i=k \neq j} x_i x_j x_k = \sum_{i, j, k \text{ distinct}} x_i x_j x_k + \sum_{i \neq k} x_i^2 x_k.$$

Signed Graph Colorings

Signed Graph

A graph G and a function $\sigma : E(G) \rightarrow \{\pm\}$.

Signed Graph Coloring

A function $\kappa : V(G) \rightarrow \mathbb{Z} \setminus \{0\}$ or

$\kappa : V(G) \rightarrow \{-n, \dots, -1, 1, \dots, n\}$ is a proper if for all adjacent vertices v, w , $\kappa(v) \neq \sigma(v, w)\kappa(w)$.

Assuming red = $-$ blue,

 is bad, while

 is good.

Signed Chromatic Polynomial

Balanced Signed Chromatic Polynomial (Zaslavsky, 1982)

Given a signed graph G , the balanced signed chromatic polynomial satisfies $\chi_G^\pm(2n) =$ the number of proper colorings of G by $\{-n, \dots, -1, 1, \dots, n\}$.

Signed Symmetric Chromatic Function

Signed Symmetric Chromatic Function

$$Y_G(\dots, x_{-2}, x_{-1}, x_1, x_2, \dots) = \sum_{\substack{\kappa: V(G) \rightarrow \mathbb{Z} \setminus \{0\} \\ \text{proper}}} \prod_{v \in V(G)} x_{\kappa(v)}.$$

Alternatively,

$$Y_G = \sum_{\substack{\kappa: V(G) \rightarrow \mathbb{Z} \setminus \{0\} \\ \text{all}}} \prod_{v \in V(G)} x_{\kappa(v)} \prod_{e=(v_1, v_2) \in E(G)} (1 - \delta_{\kappa(v_1), \sigma(v_1, v_2) \kappa(v_2)}).$$

Y_G is invariant under *signed* permutations of the indices:
permutations π satisfying $\pi(-k) = -\pi(k)$ for all k .

If $G = \bullet - \bullet + \bullet$, then $Y_G = \sum_{\substack{-i, j, k \text{ distinct}}}$ $x_i x_j x_k + \sum_{\substack{-i = k \neq j}}$ $x_i x_j x_k$.

Power Sum Bases

Power Sum Symmetric Functions

$$P_n(x_1, x_2, \dots) = \sum_{k \in \mathbb{N}} x_k^n.$$

Signed Power Sum Symmetric Functions

$$Q_{a,b}(\dots, x_{-2}, x_{-1}, x_1, x_2, \dots) = \sum_{k \in \mathbb{Z} \setminus \{0\}} x_k^a x_{-k}^b$$

Applying Newton's identities to calculations from the previous slides give:

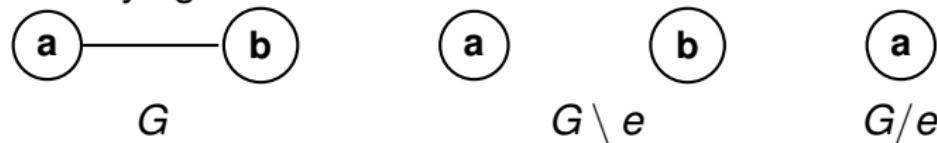
If $G = \bullet - \bullet - \bullet$, then $X_G = P_3 - 2P_2P_1 + P_1^3$.

If $G = \bullet - \bullet + \bullet$, then

$$Y_G = Q_{1,0}^2 Q_{0,1} - Q_{2,0} Q_{0,1} - Q_{1,1} Q_{1,0} + Q_{2,1}.$$

A Better Way to Compute?

Given a graph G and $(a, b) = e \in E(G)$, let $G \setminus e$ denote G with the edge e deleted and G/e denote the graph given by identifying the vertices a and b .



Theorem

$$\chi_G = \chi_{G \setminus e} - \chi_{G/e}.$$

χ_G is homogeneous of degree $V(G)$, so this identity isn't true for χ_G . By introducing weights, we can fix this.

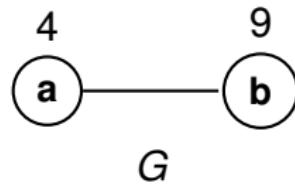
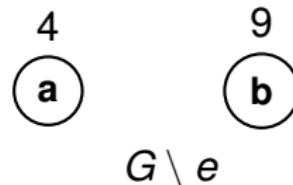
X_G for weighted graphs

Symmetric Chromatic Function for Weighted Graphs

Let G be a graph and let $\varphi : V(G) \rightarrow \mathbb{N}$ be a weighting of the vertices. Then, define $X_G(x_1, x_2, \dots) := \sum_{\substack{\kappa: V(G) \rightarrow \mathbb{N} \\ \text{proper}}} \prod_{v \in V(G)} x_{\kappa(v)}^{\varphi(v)}.$

Weighted Contraction

For a weighted graph G with weight function φ and an edge $(a, b) = e$, let G/e denote the graph given by identifying a and b and assigning this combined vertex the weight $\varphi(a) + \varphi(b)$.



Weighted Contraction-Deletion for X_G

If G is a single vertex with weight n , then $X_G = P_n$.

Theorem (Chmutov, et al. (1994), Noble, Welsh (1999))

Given a weighted graph G , we have $X_G = X_{G \setminus e} - X_{G/e}$.

$$\begin{array}{c} \text{!} \quad \text{!} \quad \text{!} \\ \bullet - - - \bullet - - - \bullet \\ \text{!} \quad \text{!} \quad \text{!} \end{array} = \begin{pmatrix} \text{!} & & \text{!} \end{pmatrix} - \begin{pmatrix} 2 & & \text{!} \end{pmatrix} =$$
$$\begin{pmatrix} \text{!} & \text{!} & \text{!} \end{pmatrix} - \begin{pmatrix} \text{!} & \text{?} \end{pmatrix} - \begin{pmatrix} \text{?} & \text{!} \end{pmatrix} + \begin{pmatrix} \text{3} \end{pmatrix} =$$
$$P_1^3 - 2P_2P_1 + P_3.$$

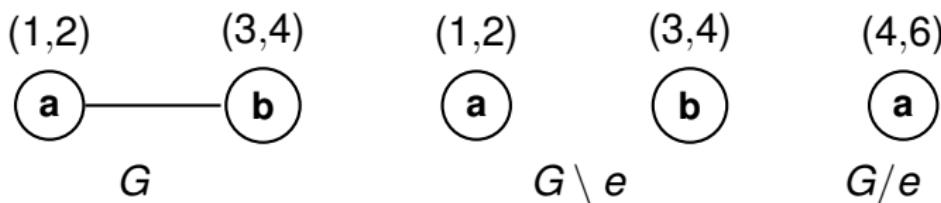
Y_G for Weighted Signed Graphs

Weighted Signed Graph

A weighted signed graph is a signed graph G and a function $\varphi : V(G) \rightarrow \mathbb{N} \cup \{0\} \times \mathbb{N} \cup \{0\}$.

Given a weighted signed graph G and an edge

$(a, b) = e \in E(G)$, define G/e by identifying the vertices a and b and adding their weights coordinate wise.



Y_G for Weighted Signed Graphs

Y_G for Weighted Signed Graphs

Given a signed graph G with weight function

$$\varphi(v) = (\varphi_1(v), \varphi_2(v)), \text{ define } Y_G = \sum_{\substack{\kappa: V(G) \rightarrow \mathbb{Z} \setminus \{0\} \\ \text{proper}}} \prod_{v \in V(G)} x_{\kappa(v)}^{\varphi_1(v)} x_{-\kappa(v)}^{\varphi_2(v)}.$$

If G is a single vertex with weight (a, b) , then $Y_G = Q_{a,b}$.

Weighted Contraction-Deletion for Y_G

Theorem

Let G be a weighted signed graph and $e \in E(G)$ be positive. Then, $Y_G = Y_{G \setminus e} - Y_{G/e}$.

Theorem

Let G be a weighted signed graph, let v be a vertex with weight (a, b) . Define the graph G' by reversing the signs of all edges incident to v and switching the weight of v to (b, a) . Then,

$$Y_G = Y_{G'}$$

$$(1,2) \ (3,4) \ (5,6) \qquad (1,2) \ (4,3) \ (5,6)$$

Calculating Y_G through Weighted Contraction-Deletion

Due to the switching identity, we need only ever perform contraction-deletion on positive edges.

$$\begin{aligned} & (1,0) \quad - \quad (1,0) \quad + \quad (1,0) \quad = \quad (0,1) \quad + \quad (1,0) \quad + \quad (1,0) \\ & \text{---} \quad \text{---} \\ & = \left(\begin{array}{c} (0,1) \\ \text{---} \\ (1,0) \end{array} \right) + \left(\begin{array}{c} (1,0) \\ \text{---} \\ (1,0) \end{array} \right) - \left(\begin{array}{c} (0,1) \\ \text{---} \\ (2,0) \end{array} \right) = \\ & \left(\begin{array}{c} (0,1) \\ \text{---} \\ (1,0) \end{array} \right) - \left(\begin{array}{c} (1,1) \\ \text{---} \\ (1,0) \end{array} \right) - \\ & \left(\begin{array}{c} (0,1) \\ \text{---} \\ (2,0) \end{array} \right) + \left(\begin{array}{c} (2,1) \\ \text{---} \\ (0,1) \end{array} \right) = \\ & Q_{1,0}^2 Q_{0,1} - Q_{1,1} Q_{1,0} - Q_{2,0} Q_{0,1} + Q_{2,1}. \end{aligned}$$

Acknowledgements

- ▶ Dr. Sergei Chmutov
- ▶ James Enouen, Eric Fawcett, Ishaan Shah
- ▶ The Ohio State University

References

Sergei Chmutov, Sergei Duzhin, and S. K. Lando. Vassiliev knot invariants. i: Introduction. 1994.

Steven D. Noble and Dominic J. A. Welsh. A weighted graph polynomial from chromatic invariants of knots. 1999.

R.P. Stanley. A symmetric function generalization of the chromatic polynomial of a graph. *Advances in Mathematics*, 111(1):166 – 194, 1995. ISSN 0001-8708. doi: <https://doi.org/10.1006/aima.1995.1020>. URL <http://www.sciencedirect.com/science/article/pii/S0001870885710201>.

Thomas Zaslavsky. Signed graph coloring. *Discrete Mathematics*, 39(2):215 – 228, 1982. ISSN 0012-365X. doi: [https://doi.org/10.1016/0012-365X\(82\)90144-3](https://doi.org/10.1016/0012-365X(82)90144-3). URL <http://www.sciencedirect.com/science/article/pii/0012365X82901443>.