Graphs

Definition. A graph G is a finite set of vertices $V(G)$ and a finite set $E(G)$ of unordered pairs (x, y) of vertices $x, y \in V(G)$ called edges.
A graph may have loops (x, x) and multiple edges when a pair (x, y) appears in $E(G)$ several times. Pictorially we represent the vertices by points and edges by lines connecting the corresponding points. Topologically a graph is a 1-dimensional cell complex with $V(G)$ as the set of 0 -cells and $E(G)$ as the set of 1-cells. Here are two pictures representing the same graph.

$$
\begin{aligned}
V(G)= & \{a, b, c, d\} \\
E(G)= & \{(a, a),(a, b),(a, c),(a, d) \\
& (b, c),(b, c),(b, d),(c, d),(d, d)\}
\end{aligned}
$$

Chromatic polynomial $\chi_{G}(q)$.

A coloring of G with q colors is a map $c: V(G) \rightarrow\{1, \ldots, q\}$. A coloring c is proper if for any edge $e: c\left(v_{1}\right) \neq c\left(v_{2}\right)$, where v_{1} and v_{2} are the endpoints of e.

Definition 1. $\chi_{G}(q):=\#$ of proper colorings of G in q colors.

Properties (Definition 2).

$\chi_{G}=\chi_{G-e}-\chi_{G / e}$;
$\chi_{G_{1} \sqcup G_{2}}=\chi_{G_{1}} \cdot \chi_{G_{2}}, \quad$ for a disjoint union $G_{1} \sqcup G_{2}$;
$\chi_{\bullet}=q$.
Stanley's theorem. For a graph G with n vertices,
$(-1)^{n} \chi_{G}(-1)=\#$ of acyclic orientations of G.

Flow polynomial $Q_{G}(q)$.

A q-flow on G is an assignment of a value $0,1, \ldots, q-1$ to every edge of G with arbitrarily chosen orientation of its edges in such a way that the total flow entering and leaving each vertex is congruent modulo q.

Definition 1. $Q_{G}(q):=\#$ of nowhere-zero q-flows on G.

Properties (Definition 2).

$$
Q_{G}(q)=0 \quad \text { if } G \text { has a bridge }
$$

$Q_{G}(q)=(q-1) Q_{G-e}(q) \quad$ if e is a loop;
$Q_{G}(q)=-Q_{G-e}(q)+Q_{G / e} \quad$ if e is neither a bridge nor a loop ;
$Q_{G}(q)=\chi_{G^{*}}(q) / q \quad$ for dual planar graphs G and G^{*}.
Tutte polynomial $T_{G}(x, y)$.

Definition 1.

$$
\begin{array}{ll}
T_{G}=T_{G-e}+T_{G / e} & \text { if e is neither a bridge nor a loop; } \\
T_{G}=x T_{G / e} & \text { if e is a bridge; } \\
T_{G}=y T_{G-e} & \text { if e is a loop; } \\
T_{G_{1} \sqcup G_{2}}=T_{G_{1} \cdot G_{2}}=T_{G_{1}} \cdot T_{G_{2}} & \text { for a disjoint union } G_{1} \sqcup G_{2} \\
& \text { and a one-point join } G_{1} \cdot G_{2} ;
\end{array}
$$

$T_{\bullet}=1$.

Properties.

$$
\begin{array}{ll}
T_{G}(1,1) & \text { is the number of spanning trees of } G ; \\
T_{G}(2,1) & \text { is the number of spanning forests of } G ; \\
T_{G}(1,2) & \text { is the number of spanning connected subgraphs of } G ; \\
T_{G}(2,2)=2^{|E(G)|} & \text { is the number of spanning subgraphs of } G ; \\
\chi_{G}(q)=q^{k(G)}(-1)^{r(G)} T_{G}(1-q, 0) ; \\
Q_{G}(q)=(-1)^{n(G)} T_{G}(0,1-q) .
\end{array}
$$

Definition 2.

Let - F be a graph;

- $v(F)$ be the number of its vertices;
- $e(F)$ be the number of its edges;
- $k(F)$ be the number of connected components of F;
- $r(F):=v(F)-k(F)$ be the rank of F;
- $n(F):=e(F)-r(F)$ be the nullity of F;

$$
T_{G}(x, y):=\sum_{F \subseteq E(G)}(x-1)^{r(G)-r(F)}(y-1)^{n(F)}
$$

Dichromatic polynomial $Z_{G}(q, v)$ (Definition 3).
Let $\operatorname{Col}(G)$ denote the set of colorings of G with q colors.

$$
Z_{G}(q, v):=\sum_{c \in \operatorname{Col}(G)}(1+v)^{\# \text { edges colored not properly by } c}
$$

Properties.
$Z_{G}=Z_{G-e}+v Z_{G / e}$;
$Z_{G_{1} \sqcup G_{2}}=Z_{G_{1}} \cdot Z_{G_{2}}, \quad$ for a disjoint union $G_{1} \sqcup G_{2} ;$
$Z \bullet=q$;
$Z_{G}(q, v)=\sum_{F \subseteq E(G)} q^{k(F)} v^{e(F)} ;$
$\chi G(q)==Z_{G}(q,-1) ;$
$Z_{G}(q, v)=q^{k(G)} v^{r(G)} T_{G}\left(1+q v^{-1}, 1+v\right) ;$
$T_{G}(x, y)=(x-1)^{-k(G)}(y-1)^{-v(G)} Z_{G}((x-1)(y-1), y-1)$.

Potts model in statistical mechanics (Definition 4).

Potts model (C.Domb 1952);
$q=2$ the Using model (W.Lenz, 1920)
Let G be a graph.
Particles are located at vertices of G. Each particle has a spin, which takes q different values. A state, $\sigma \in \mathcal{S}$, is an assignment of spins to all vertices of G. Neighboring particles interact with each other only is their spins are the same.

The energy of the interaction along an edge e is $-J_{e}$ (coupling constant). The model is called ferromagnetic if $J_{e}>0$ and antiferromagnetic if $J_{e}<0$.

Energy of a state σ (Hamiltonian),

$$
H(\sigma)=-\sum_{(a, b)=e \in E(G)} J_{e} \delta(\sigma(a), \sigma(b)) .
$$

Boltzmann weight of σ :

$$
\begin{aligned}
& n \text { weight of } \sigma \text { : } \\
& e^{-\beta H(\sigma)}=\prod_{(a, b)=e \in E(G)} e^{J_{e} \beta \delta(\sigma(a), \sigma(b))}=\prod_{(a, b)=e \in E(G)}\left(1+\left(e^{J_{e} \beta}-1\right) \delta(\sigma(a), \sigma(b))\right),
\end{aligned}
$$

where the inverse temperature $\beta=\frac{1}{\kappa T}, T$ is the temperature, $\kappa=1.38 \times 10^{-23}$ joules/Kelvin is the Boltzmann constant.

The Potts partition function (for $x_{e}:=e^{J_{e} \beta}-1$)

$$
Z_{G}\left(q, x_{e}\right):=\sum_{\sigma \in \mathcal{S}} e^{-\beta H(\sigma)}=\sum_{\sigma \in \mathcal{S}} \prod_{e \in E(G)}\left(1+x_{e} \delta(\sigma(a), \sigma(b))\right)
$$

Properties of the Potts model Probability of a state $\sigma: \quad P(\sigma):=e^{-\beta H(\sigma)} / Z_{G}$.
Expected value of a function $f(\sigma)$:

$$
\langle f\rangle:=\sum_{\sigma} f(\sigma) P(\sigma)=\sum_{\sigma} f(\sigma) e^{-\beta H(\sigma)} / Z_{G}
$$

Expected energy: $\langle H\rangle=\sum_{\sigma} H(\sigma) e^{-\beta H(\sigma)} / Z_{G}=-\frac{d}{d \beta} \ln Z_{G}$.
Fortuin-Kasteleyn'1972: $\quad Z_{G}\left(q, x_{e}\right)=\sum_{F \subseteq E(G)} q^{k(F)} \prod_{e \in F} x_{e}$,
where $k(F)$ is the number of connected components of the spanning subgraph F.
$Z_{G}=Z_{G \backslash e}+x_{e} Z_{G / e}$.

Spanning tree generating function (Definition 5).

For a connected graph G fix an order of its edges: $e_{1}, e_{2}, \ldots, e_{m}$. Let T be a spanning tree.
An edge $e_{i} \in E(T)$ is called internally active (live) if $i<j$ for any edge e_{j} connecting the two components of $T-e_{i}$

An edge $e_{j} \notin E(T)$ is called externally active (live) if $j<i$ for any edge e_{i} in the unique cycle of $T \cup e_{j}$.

Let $i(T)$ and $j(T)$ be the numbers of internally and externally active edges correspondingly.

$$
T_{G}(x, y):=\sum_{T} x^{i(T)} y^{j(T)}
$$

Doubly weighted Tutte polynomial .

With each edge e of a graph G we associate two variables (weights) u_{e} and v_{e}.

$$
T_{G}\left(\left\{u_{e}, v_{e}\right\}, x, y\right):=\sum_{F \subseteq E(G)}\left(\prod_{e \in F} u_{e}\right)\left(\prod_{e \notin F} v_{e}\right)(x-1)^{r(G)-r(F)}(y-1)^{n(F)}
$$

Properties.

$$
\begin{array}{ll}
T_{G}=v_{e} T_{G-e}+u_{e} T_{G / e} & \text { if } e \text { is neither a bridge nor a loop } ; \\
T_{G}=\left(v_{e}(x-1)+u_{e}\right) T_{G / e} & \text { if } e \text { is a bridge; } \\
T_{G}=\left(v_{e}+(y-1) u_{e}\right) T_{G-e} & \text { if } e \text { is a loop; } \\
T_{G_{1} \sqcup G_{2}}=T_{G_{1} \cdot G_{2}}=T_{G_{1}} \cdot T_{G_{2}} & \text { for a disjoint union } G_{1} \sqcup G_{2} \\
T_{\bullet}=1 . & \text { and a one-point join } G_{1} \cdot G_{2} ;
\end{array}
$$

Tutte polynomial of signed graphs .

Signed graph is a a graphs with signs ± 1 assigned to the edges of the graph.
We define the Tutte polynomial of a signed graph by substituting the following weights to the doubly weighted Tutte polynomial.

$$
\text { +-edge: } u_{e}:=1, \quad v_{e}:=1 ; \quad \text {--edge: } u_{e}:=\sqrt{\frac{x-1}{y-1}}, \quad v_{e}:=\sqrt{\frac{y-1}{x-1}} .
$$

With this substitution the Tutte polynomial for signed graphs becomes

$$
T_{G}(x, y)=\sum_{F \subseteq E(G)}(x-1)^{r(G)-r(F)+s(F)}(y-1)^{n(F)-s(F)},
$$

for $s(F):=\frac{e_{-}(F)-e_{-}(E(G) \backslash F)}{2}$, where $e_{-}(S)$ stands for the number of negative edges of S.

Chromatic polynomial of signed graphs.

There are two chromatic polynomials of signed graphs.
A q-coloring of a signed G is a map $c: V(G) \rightarrow\{-q,-q+1, \ldots,-1,0,1, \ldots, q-1, q\}$. A q-coloring c is proper if for any edge e with the $\operatorname{sign} \varepsilon_{e}: c\left(v_{1}\right) \neq \varepsilon c\left(v_{2}\right)$, where v_{1} and v_{2} are the endpoints of e.

Definition.

$\chi_{G}(2 q+1):=\#$ of proper q-colorings of G.
$\chi_{G}^{\neq 0}(2 q):=\#$ of proper q-colorings of G which take nonzero values.

Properties.

- $\chi_{G}(\lambda)$ is a polynomial function of $\lambda=2 q+1>0$;
- $\chi_{G}^{\neq 0}(\lambda)$ is a polynomial function of $\lambda=2 q>0$;
- $\chi_{G}(\lambda)=\chi_{G-e}(\lambda)-\chi_{G / e}(\lambda)$;
- $\chi_{G}^{\neq 0}(\lambda)=\chi_{G-e}^{\neq 0}(\lambda)-\chi_{G / e}^{\neq 0}(\lambda)$;
- $\chi_{G_{1} \sqcup G_{2}}=\chi_{G_{1}} \cdot \chi_{G_{2}}$ and $\chi_{G_{1} \sqcup G_{2}}^{\neq 0}=\chi_{G_{1}}^{\neq 0} \cdot \chi_{G_{2}}^{\neq 0}$ for a disjoint union $G_{1} \sqcup G_{2}$;
- $\chi_{\emptyset}=1$.

