Thompson's Groups

Jake Huryn, Rushil Raghavan, Dennis Sweeney

OSU Knots and Graphs Working Group 2020

06.26.2020

Some Special Functions on [0, 1]

Let F be the set of piecewise-linear continuous bijections $f:[0,1] \rightarrow [0,1]$ satisfying

- If f is differentiable at x, then f'(x) is a power of 2
- There are finitely many points at which f is not differentiable, and they are all dyadic rationals, i.e., rational numbers equal to ^a/_{2^b} for some integers a, b.

Examples

A group?

Recall that a group is a set G, along with a binary operation, satisfying the following properties:

- ► There is an element e ∈ G such that for all g ∈ G, ge = eg = g,
- ▶ For all $g \in G$, there is an element $g^{-1} \in G$ such that $gg^{-1} = g^{-1}g = e$,
- For all $g, h, k \in G$, g(hk) = (gh)k.

Let's check that F, under the operation of composition, is a group.

A group! Part 1: Inverses

Let $f \in F$, and let $0 = a_1 < a_2 < \cdots < a_n = 1$ be the points at which f is not differentiable.

Since f is increasing, $0 = f(a_1) < f(a_2) < \cdots < f(a_n) = 1$. For i < n and $x \in [a_i, a_{i+1}]$, there is an integer k_i such that $f(x) = 2^{k_i}(x - a_i) + f(a_i)$. By induction on n, $f(a_i)$ is a dyadic rational for each i, and therefore f sends dyadic rationals to dyadic rationals.

For $x \in [f(a_i), f(a_{i+1})]$, $f^{-1}(x) = 2^{-k_i}(x - f(a_i)) + a_i$. So, $f^{-1} \in F$.

A group! Part B: Composition

Let $f, g \in F$. Clearly, $f \circ g$ is a continuous bijection from [0, 1] to [0, 1].

If $f \circ g$ is not differentiable at x, then either g is not differentiable at x, or f is not differentiable at g(x). Thus, $f \circ g$ is not differentiable at finitely many points.

If g is not differentiable at x, then x is a dyadic rational. If f is not differentiable at g(x), then g(x) is a dyadic rational, so x is a dyadic rational.

Exercise: Show that if $f \circ g$ is differentiable at x, then the derivative at x is a power of 2. This is easy if g is differentiable at x and f is differentiable at g(x), but a subtlety arises if this is not the case.

Why do we care?

F was first proposed in the 1960s as a potential counterexample to the famous von Neumann conjecture, about the amenability of certain finitely presented groups. It is still not known if F is amenable, but many are interested in this question.

F has been repeatedly discovered by topologists as an example arriving in surprising settings.

F, and its related supergroups *T* and *V* have many surprising properties that make them objects of special interest. Many are quite technical, but one that you may already find surprising is that *F* has the finite presentation (A, B) = [AB = 1, A = 1, BA] [AB = 1, A = 2, BA]

 $\langle A, B : [AB^{-1}, A^{-1}BA], [AB^{-1}, A^{-2}BA^{2}] \rangle.$

F has a nice geometric interpretation, which coupled with its vast array of interesting properties, makes it an important object of study in geometric group theory.

Why do we care?

In 2018, Vaughan Jones developed a way to produce links from elements of Thompson's group.

In 2019, Valeriano Aiello showed that any link can be produced in this way.

Thus, just as a link diagram can represent a link, a given link can be represented by an element of Thompson's group.

Our project is an attempt to find the corresponding "Reidemeister moves" for elements of Thompson's group; in other words, we wish to determine exactly when two elements of F produce the same link.

References

J.W. Cannon, W. J. Floyd, W. R. Perry: Introductory Notes on Richard Thompson's Groups

V. Jones: On the Construction of Knots and Links from Thompson's Groups

Wikipedia