$$G = (V, E) \longrightarrow M = (E, I)$$
what can we say about $I = \{A \subseteq E \mid A \text{ is cycle-free}\}$?
1) \oint is always cycle-free
2) Any subset of a cycle-free set is cycle-free.
This is good and all, but cycles have a little
more sinceture that can be captured.

$$I = \int_{a}^{2} \int_{a}^{b} \int_{a}^{q} \int_{a}^{q} \int_{a}^{q} \int_{a}^{b} \int_{a}^{q} \int_{a}^{b} \int_{a}^{q} \int_{a}^{d} \int_{a}^{b} \int_{a}^{q} \int_{a}^{b} \int_{a}^{q} \int_{a}^{d} \int_{a}^{b} \int_{a}^{q} \int_{a}^{b} \int_{a}^{d} \int_{a}^{d} \int_{a}^{b} \int_{a}^{b} \int_{a}^{d} \int_{a}^{b} \int_{a}^{b} \int_{a}^{d} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{a}^{d} \int_{a}^{b} \int_{a}^{b}$$

Definition of Mutroid (Basis Edition)
A matroid
$$M = (E, B)$$
 is a set of
"edges" E with a set B of "bases" TEE
such that...
1) B is nonempty
2) If Ti, T₂ EB, the
for my a ET, \T₂,
three exists $b \in T_2 \setminus T_1$
such that $(T_1 \setminus a) \cup b \in B$
 $Mutroid$ (Basis Edition)
is a set of
bases TE E
is a set of
TSE
TSE
TSE
TI mut T₂, you
con replace my deferring
edge in T₁ with m
edge in T₂.

Definition of Matroid (Independence Edition) A matroid M= (E, I) is a set of edges E with a set of Independent subsets I such that... I) $\phi \in \mathbb{I}$ 2) Subsets SE independent sets are independent 3) If A and B are independent and |B|< |A|, then there is some XEA\B such that BU{X}EI. Trees (aka buses) are maximal independent sets. Cycles one minimal dependent sets.

If SEE, then we can consider the matroid restricted to S, Mls.

Definition of <u>Rank</u> of a subset SEE r(S) is the size of the bases in Mls, i.e. The number of edges in the maximal Spinning Forests of the restriction to S. r(5) = 6

Definition of <u>Fluts</u> of a Matroid. A set V is a flat of M if adding any edge to V would increase its rank.

$$T_{M} = Tutte Polynomial$$
Can be expressed on matroids.

For graphs (5,

 $T_{G}(x,0) \propto \chi_{G}(1-x)$ (chrometic)

 $T_{G}(x,0) \propto \chi_{G}(1-y)$ (flow)

For matroids M,

 $T_{M}(x,y) = T_{M*}(y,x)$.

 $T_{M}(x,y) = \sum_{A \leq M} T_{M|A}(x,0)$

 $A \leq M$

 $\sum_{A \leq M} \chi_{MA}(1-x) = \chi_{M}(y)$

What's Next?

$$C_{G}(\overline{P}, \overline{q}) =$$

$$= \sum_{s \in E} (-1)^{|A/s| + |B/(E-s)|} X_{A/s}(\overline{P}) X_{B/(E-s)}(\overline{q})$$

It turns out that $(\zeta_{0}(-\overline{p}, -\overline{q}) = D_{0}(\overline{p}, \overline{q})$