

1) $\left\lvert\, \in S \quad \begin{aligned} & \text { Elements of the braid group } \mathfrak{B}_{n} \text { have topological interpretation as }\end{aligned}\right.$ a collection of n strands going monotonically vertical from fixed n points at the bottom of the braid to the same points at the top of $1 \cdot a=a_{\cdot} \mid=a_{\text {th le }}$ bottom and the top.

The group operation is staking the second braid at a top of the first

2) $\forall a \in S$ one. The identity element consists of n vertical strand without any

$$
\begin{aligned}
& \exists a^{-1} \\
& a \cdot a^{-1}=a^{-1} \cdot a=1 \\
& \text { 3) }((a b) c)=a \cdot(b c)
\end{aligned}
$$

$$
\sigma_{i} \sigma_{i}^{-1}=\left[\begin{array}{c}
\cdots \\
\cdots
\end{array}<_{-}^{-}\left[\begin{array}{l}
\cdots \\
\cdots \\
\cdots
\end{array}\right]_{-}^{-} \sigma_{i}^{-1}\left[\begin{array}{l}
-\cdots \\
\cdots
\end{array}\right]_{-}^{-}[]_{-}^{--}\left[\begin{array}{l}
- \\
\cdots \\
\cdots
\end{array}\right]=1 \in \mathfrak{B}_{n}\right.
$$

 crossings.

The square $\sigma_{i}^{2} \neq 1$:

$$
\sigma_{i}^{2}=\left[\begin{array}{l}
\cdots \\
\cdots
\end{array}\right]_{-}\left[\begin{array}{l}
\cdots \\
\cdots
\end{array}\right] \neq 1 \in \mathfrak{B}_{n}
$$

The relations in the braid group look like this.

So the braid group \mathfrak{B}_{n} has the presentation by generations and relations
There is always an epimorphism $\mathfrak{B}_{n}:=\left\langle\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n-1}\right| \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ if $|j-i|>1, \quad \xlongequal{\mid j \text { onto the symmetric group }} \overbrace{i} \overbrace{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}\rangle$

$$
\longrightarrow S_{n}:=\left\langle s_{1}, s_{2}, \ldots, s_{n-1}\left(s_{i}^{2}\right) \quad s_{i} s_{j}=s_{j} s_{i} \text { if }\right| j-i\left|>1, \quad s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}\right\rangle,
$$

which sends a braid to a permutation of the endpoints. Algebraically this epimorphism is given by adding the relations $\sigma_{i}^{2}=1$ to the relation of the braid group and replacing $\sigma_{i} \mapsto s_{i}$. The kernel of this epimorphism is called pure braid group, \mathfrak{P}_{n}.

Theorem. Closure of braids. [Alexander, 1923] Any link can be represented as a closure of a braid.

Markov theorem.[Mark, Bir1] Two closed braids are equivalent (as links) if and only if the braids are related by a finite sequence of the following Markov moves.
? (Mi)
(M2)

Coxeter groups

In 1935 H. S. M. Coxeter classified all finite groups generated by reflections about hyperplanes (passing through 0) in \mathbb{R}^{n}. Such hyperplanes are called mirrors of the group. They include all groups of symmetries of regular convex n-dimensional polytopes and several others. These groups have presentations

$$
\left\langle r_{1}, r_{2}, \ldots, r_{n}\right| r_{i}^{2}=1, \quad \underbrace{r_{i} r_{j} r_{i} r_{j} \ldots}_{m_{i j} \text { factors }}=\underbrace{\left.r_{j} r_{i} r_{j} r_{i} \ldots\right\rangle}_{m_{i j} \text { factors }}
$$

for some integers $m_{i j}$ which form a matrix called the Coxeter matrix. Usually the Coxeter matrix is encoded by the Coxeter-Dynkin diagram which is a graph whose vertices corresponds to generators, the vertices i and j are adjacent if $m_{i j} \geqslant 3$, an edge is labeled with the value of $m_{i j}$ whenever the value is 4 or greater, and the generators corresponding to non-adjacent vertices commute, $m_{i j}=2$. Here is the classification of the connected Coxeter-Dynkin diagrams with finite Coxeter group (the subscript of the type indicates the number of vertices which is equal to dimension).

A description of 4D regular polytopes see at https://en.wikipedia.org/wiki/Regular_4-polytope About the Coxeter groups in general see https://en.wikipedia.org/wiki/Coxeter_group We may also call $A_{2}=I_{2}(3), B_{2}=I_{2}(4), H_{2}=I_{2}(5), G_{2}=I_{2}(6)$. The Coxeter group of type A_{n} is isomorphic to the symmetric group S_{n+1}.

Remarkably the same classification appears in many unrelated areas of mathematics. For example, in simple Lie algebras, simple critical points of holomorphic functions, quiver representations, etc.

Artin groups

Braid groups \mathfrak{B}_{n} were introduced by Emil Artin (the father of Michael Artin whose textbook you probably know from an abstract algebra course) in 1925. An Artin group associated with a Coxeter group is obtained from the corresponding Coxeter group by dropping the relation $r_{i}^{2}=1$. So it has a presentation

$$
\left\langle s_{1}, s_{2}, \ldots, s_{n}\right| \underbrace{s_{i} s_{j} s_{i} s_{j} \ldots}_{m_{i j} \text { factors }}=\underbrace{\left.s_{j} s_{i} s_{j} s_{i} \ldots\right\rangle}_{m_{i j} \text { factors }}
$$

for the entries $m_{i j}$ of the Coxeter matrix. The Artin groups corresponding to the finite Coxeter groups are called Artin groups of finite type. We will denote them by the type symbol of the Coxeter group. For instance,

$$
\left.A_{n}:=\left\langle s_{1}, s_{2}, \ldots, s_{n}\right| s_{i} s_{j}=s_{j} s_{i} \text { if }|j-i|>1, \quad s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}\right\rangle=\mathfrak{B}_{n+1} . \mid
$$

An Artin group is the fundamental group of the space of regular orbits of the complexified action of the corresponding Coxeter group. Namely, we consider a complexification \mathbb{C}^{n} of \mathbb{R}^{n} consisting of n-vectors with complex coordinates instead of reals, and allow the elements of the Coxeted group act on \mathbb{C}^{n} by the same formulas as on \mathbb{R}^{n}. It is known that the space of all orbits of such action is also \mathbb{C}^{n}. The singular orbits Σ are the orbits of points from the mirrors. The complement to Σ in the space of orbits \mathbb{C}^{n} is called the space of regular orbits. The Artin group is the fundamental group of it.

There is an obvious epimorphism of an Artin group to the corresponding Coxeter group generalizing the epimirphism $\mathfrak{B}_{n} \rightarrow S_{n}$
[Bir1] J. S. Birman, Braids, Links and Mapping Class Groups, Princeton University Press, 1974.
[Mark] A. A. Markov, Über die freie Aquivalenz geschlossener Zöpfe, Recueil Mathematique Moscou 1 (1935) 73-78.

