Coxeter groups

In 1935 H. S. M. Coxeter classified all finite groups generated by reflections about hyperplanes (passing through 0) in \mathbb{R}^n . Such hyperplanes are called *mirrors* of the group. They include all groups of symmetries of regular convex *n*-dimensional polytopes and several others. These groups have presentations

 $\mathbf{2}$

$$\langle r_1, r_2, \dots, r_n | r_i^2 = 1, \quad \underbrace{r_i r_j r_i r_j \dots}_{m_{ij} \text{ factors}} = \underbrace{r_j r_i r_j r_i \dots}_{m_{ij} \text{ factors}} \rangle,$$

for some integers m_{ij} which form a matrix called the *Cox*eter matrix. Usually the Coxeter matrix is encoded by the *Coxeter–Dynkin diagram* which is a graph whose vertices corresponds to generators, the vertices *i* and *j* are adjacent if $m_{ij} \ge 3$, an edge is labeled with the value of m_{ij} whenever the value is 4 or greater, and the generators corresponding to non-adjacent vertices commute, $m_{ij} = 2$. Here is the classification of the connected Coxeter–Dynkin diagrams with finite Coxeter group (the subscript of the type indicates the number of vertices which is equal to dimension).

 $\mathbf{B}_{\mathbf{Z}}$

A description of 4D regular polytopes see at https://en.wikipedia.org/wiki/Regular_4-polytope About the Coxeter groups in general see https://en.wikipedia.org/wiki/Coxeter_group We may also call $A_2 = I_2(3)$, $B_2 = I_2(4)$, $H_2 = I_2(5)$, $G_2 = I_2(6)$. The Coxeter group of type A_n is isomorphic to the symmetric group S_{n+1} .

Remarkably the same classification appears in many unrelated areas of mathematics. For example, in simple Lie algebras, simple critical points of holomorphic functions, quiver representations, etc.

Artin groups

Braid groups \mathfrak{B}_n were introduced by Emil Artin (the father of Michael Artin whose textbook you probably know from an abstract algebra course) in 1925. An Artin group associated with a Coxeter group is obtained from the corresponding Coxeter group by dropping the relation $r_i^2 = 1$. So it has a presentation

$$\langle s_1, s_2, \dots, s_n | \underbrace{s_i s_j s_i s_j \dots}_{m_{ij} \text{ factors}} = \underbrace{s_j s_i s_j s_i \dots}_{m_{ij} \text{ factors}} \rangle$$
,

for the entries m_{ij} of the Coxeter matrix. The Artin groups corresponding to the finite Coxeter groups are called *Artin* groups of finite type. We will denote them by the type symbol of the Coxeter group. For instance,

 $A_n := \langle s_1, s_2, \dots, s_n | s_i s_j = s_j s_i \text{ if } |j-i| > 1, \quad s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \rangle = \mathfrak{B}_{n+1} .$

An Artin group is the fundamental group of the space of regular orbits of the complexified action of the corresponding Coxeter group. Namely, we consider a complexification \mathbb{C}^n of \mathbb{R}^n consisting of *n*-vectors with complex coordinates instead of reals, and allow the elements of the Coxeted group act on \mathbb{C}^n by the same formulas as on \mathbb{R}^n . It is known that the space of all orbits of such action is also \mathbb{C}^n . The singular orbits Σ are the orbits of points from the mirrors. The complement to Σ in the space of orbits \mathbb{C}^n is called *the space of regular orbits*. The Artin group is the fundamental group of it.

There is an obvious epimorphism of an Artin group to the corresponding Coxeter group generalizing the epimirphism $\mathfrak{B}_n \twoheadrightarrow S_n$

References

[[]Bir1] J. S. Birman, Braids, Links and Mapping Class Groups, Princeton University Press, 1974.

[[]Mark] A. A. Markov, Über die freie Aquivalenz geschlossener Zöpfe, Recueil Mathematique Moscou 1 (1935) 73–78.