Graphs

Definition. A graph G is a finite set of vertices $V(G)$ and a finite set $E(G)$ of unordered pairs (x, y) of vertices $x, y \in V(G)$ called edges.

A graph may have loops (x, x) and multiple edges when a pair (x, y) appears in $E(G)$ several times. Pictorially we represent the vertices by points and edges by lines connecting the corresponding points. Topologically a graph is a 1-dimensional cell complex with $V(G)$ as the set of 0-cells and $E(G)$ as the set of 1-cells. Here are two pictures representing the same graph.

![Graphs](image)

Chromatic polynomial $C_G(q)$.

A coloring of G with q colors is a map $c : V(G) \to \{1, \ldots, q\}$. A coloring c is proper if for any edge e: $c(v_1) \neq c(v_2)$, where v_1 and v_2 are the endpoints of e.

Definition 1. $C_G(q) := \# \text{ of proper colorings of } G \text{ in } q \text{ colors}$.

Properties (Definition 2).

$C_G = C_{G-e} - C_{G/e}$;

$C_{G_1 \sqcup G_2} = C_{G_1} \cdot C_{G_2}$, for a disjoint union $G_1 \sqcup G_2$;

$C_{\bullet} = q$.

Tutte polynomial $T_G(x, y)$.

Definition 1.

$T_G = T_{G-e} + T_{G/e}$ if e is neither a bridge nor a loop;

$T_G = xT_{G/e}$ if e is a bridge;

$T_G = yT_{G-e}$ if e is a loop;

$T_{G_1 \sqcup G_2} = T_{G_1} \cdot T_{G_2}$ for a disjoint union $G_1 \sqcup G_2$ and a one-point join $G_1 \cdot G_2$;

$T_{\bullet} = 1$.

Properties.

$T_G(1, 1)$ is the number of spanning trees of G;

$T_G(2, 1)$ is the number of spanning forests of G;

$T_G(1, 2)$ is the number of spanning connected subgraphs of G;

$T_G(2, 2) = 2^{|E(G)|}$ is the number of spanning subgraphs of G.

$C_G(q) = q^{k(G)}(-1)^{r(G)}T_G(1 - q, 0)$.

Definition 2.

Let $\bullet \ F$ be a graph:

- $v(F)$ be the number of its vertices;
- $e(F)$ be the number of its edges;
- $k(F)$ be the number of components of F;
\[T_G(x, y) := \sum_{F \subseteq E(G)} (x - 1)^{r(G) - r(F)} (y - 1)^{n(F)} \]

Dichromatic polynomial \(Z_G(q, v) \) (Definition 3).

Let \(Col(G) \) denote the set of colorings of \(G \) with \(q \) colors.

\[Z_G(q, v) := \sum_{c \in Col(G)} (1 + v)^{\# \text{ edges non properly colored by } c} \]

Properties .
- \(Z_G = Z_{G-e} + vZ_{G/e} \);
- \(Z_{G_1 \cup G_2} = Z_{G_1} \cdot Z_{G_2} \), for a disjoint union \(G_1 \sqcup G_2 \);
- \(Z_* = q \);
- \(Z_G(q, v) = \sum_{F \subseteq E(G)} q^{k(F)}v^{e(F)} \);
- \(C_G(q) = Z_G(q, -1) \);
- \(Z_G(q, v) = q^{k(G)}v^{e(G)}T_G(1 + qv^{-1}, 1 + v) \);
- \(T_G(x, y) = (x - 1)^{-k(G)}(y - 1)^{-v(G)}Z_G((x - 1)(y - 1), y - 1) \).

Potts model in statistical mechanics (Definition 4).

Let \(G \) be a graph.

Particles are located at vertices of \(G \). Each particle has a spin, which takes \(q \) different values. A state, \(\sigma \in \mathcal{S} \), is an assignment of spins to all vertices of \(G \). Neighboring particles interact with each other only if their spins are the same.

The energy of the interaction along an edge \(e \) is \(-J_e\) (coupling constant). The model is called ferromagnetic if \(J_e > 0 \) and antiferromagnetic if \(J_e < 0 \).

Energy of a state \(\sigma \) (Hamiltonian),

\[H(\sigma) = - \sum_{(a, b) = e \in E(G)} J_e \delta(\sigma(a), \sigma(b)). \]

Boltzmann weight of \(\sigma \):

\[e^{-\beta H(\sigma)} = \prod_{(a, b) = e \in E(G)} e^{J_e \beta(\delta(\sigma(a), \sigma(b)))} = \prod_{(a, b) = e \in E(G)} \left(1 + (e^{J_e \beta} - 1)\delta(\sigma(a), \sigma(b)) \right), \]

where the inverse temperature \(\beta = \frac{1}{\kappa T} \), \(T \) is the temperature, \(\kappa = 1.38 \times 10^{-23} \) joules/Kelvin is the Boltzmann constant.

The Potts partition function (for \(x_e := e^{J_e \beta} - 1 \))
Properties of the Potts model

Probability of a state σ: $P(\sigma) := e^{-\beta H(\sigma)}/Z_G$.

Expected value of a function $f(\sigma)$:

$$\langle f \rangle := \sum_\sigma f(\sigma)P(\sigma) = \sum_\sigma f(\sigma)e^{-\beta H(\sigma)}/Z_G.$$

Expected energy: $\langle H \rangle = \sum_\sigma H(\sigma)e^{-\beta H(\sigma)}/Z_G = -\frac{d}{d\beta} \ln Z_G$.

Fortuin—Kasteleyn’1972: $Z_G(q, x_e) = \sum_{F \subseteq E(G)} q^{k(F)} \prod_{e \in F} x_e,$

where $k(F)$ is the number of connected components of the spanning subgraph F.

$Z_G = Z_{G\setminus e} + x_e Z_{G/e}$.

Spanning tree generating function (Definition 5).

For a connected graph G fix an order of its edges: e_1, e_2, \ldots, e_m. Let T be a spanning tree.

An edge $e_i \in E(T)$ is called internally active (live) if $i < j$ for any edge e_j connecting the two components of $T - e_i$.

An edge $e_j \notin E(T)$ is called externally active (live) if $j < i$ for any edge e_i in the unique cycle of $T \cup e_j$.

Let $i(T)$ and $j(T)$ be the numbers of internally and externally active edges correspondingly.

$$T_G(x, y) := \sum_T x^{i(T)}y^{j(T)}$$