Dual representable matroids

Let \(E = \{v_1, \ldots, v_n\} \) be a collection of vectors in a vector space \(U \) and \(M \) be a matroid of their linear dependences. Consider an \(n \)-dimensional vector space \(V \) with a basis \(e_1, \ldots, e_n \) and a linear map \(f : V \to U \) sending \(e_k \) to \(v_k \). Denote the kernel of this map by \(W \). It is a subspace of \(V \) and there is a natural inclusion map \(i : W \hookrightarrow V \). There is the dual map \(W \overset{i^*}{\to} V^* \) of dual vector spaces. The space \(V^* \) has a natural dual basis \(e_1^*, \ldots, e_n^* \). Their images \(i^*(e_1^*), \ldots, i^*(e_n^*) \) is a collection of vectors in the space \(W^* \). These vectors with the structure of linear dependences between them form the dual matroid \(M^* \).

∆-matroids [Bouchet]

<table>
<thead>
<tr>
<th>Matroids</th>
<th>∆-matroids</th>
</tr>
</thead>
<tbody>
<tr>
<td>A matroid is a pair (M = (E, \mathcal{B})) consisting of a finite set (E) and a nonempty collection (\mathcal{B}) of its subsets, called bases, satisfying the axioms:</td>
<td></td>
</tr>
<tr>
<td>(B1) No proper subset of a base is a base.</td>
<td></td>
</tr>
<tr>
<td>(B2) Exchange axion If (B_1) and (B_2) are bases and (b_1 \in B_1 - B_2), then there is an element (b_2 \in B_2 - B_1) such that ((B_1 - b_1) \cup b_2) is a base.</td>
<td></td>
</tr>
<tr>
<td>A ∆-matroid is a pair (M = (E, \mathcal{F})) consisting of a finite set (E) and a nonempty collection (\mathcal{F}) of its subsets, called feasible sets, satisfying the Symmetric Exchange axion</td>
<td></td>
</tr>
<tr>
<td>If (F_1) and (F_2) are two feasible sets and (f_1 \in F_1 \Delta F_2), then there is an element (f_2 \in F_1 \Delta F_2) such that (F_1 \Delta {f_1, f_2}) is a feasible set.</td>
<td></td>
</tr>
</tbody>
</table>

Ribbon graphs (graphs on surfaces)

Definition. A ribbon graph \(G \) is a surface (possibly non-orientable) with boundary, represented as the union of two sets of closed topological discs called vertices \(V(G) \) and edges \(E(G) \), satisfying the following conditions:

- these vertices and edges intersect by disjoint line segments;
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two such line segments.

Definition. A quasi-tree is ribbon graph \(G \) with a single boundary component, \(bc(G) = 1 \).

Examples.

Spanning quasi-trees: \(\{a\}, \{b\}, \{a, b, c\} \)

Spanning quasi-trees: \(\emptyset, \{a, b\} \)

Spanning quasi-trees: \(\{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\} \)

Theorem. Let \(G = (V, E) \) be a ribbon graph. Then \(D(G) := (E, \{\text{spanning quasi-trees}\}) \) is a ∆-matroid.
Minors in Δ-matroids

Let $D = (E, F)$ be a Δ-matroid and $e \in E$. e is a loop iff $\forall F \in \mathcal{F}, e \not\in F$. e is a coloop iff $\forall F \in \mathcal{F}, e \in F$.

If e is not a loop, $D/e := (E \setminus \{e\}, \{F \setminus \{e\}|F \in \mathcal{F}, e \in F\})$.

If e is not a coloop, $D \setminus e := (E \setminus \{e\}, \{F \setminus \{e\}|F \in \mathcal{F}, F \subset E \setminus \{e\}\}$.

Twists of Δ-matroids. Let $D = (E, F)$ be a Δ-matroids and $A \subset E$.

$D * A := (E, \{F \Delta A|F \in \mathcal{F}\})$.

Dual Δ-matroid: $D^* := D + E$.

Matroids associated with a Δ-matroid

Let $D = (E, F)$ be a Δ-matroid.

$D_{\min} := (E, F_{\min})$, where $F_{\min} := \{F \in \mathcal{F}|F$ is of minimal possible cardinality\}.

$D_{\max} := (E, F_{\max})$, where $F_{\max} := \{F \in \mathcal{F}|F$ is of maximal possible cardinality\}.

Facts.

- D_{\min} and D_{\max} are usual matroids. Width $w(D) := r(D_{\max}) - r(D_{\min})$.
- $(D(G))_{\min} = C(G)$. $(D(G))_{\max} = (C(G^*))^*$.
- $D(G) = C(G)$ iff G is a planar ribbon graph.

Matroid perspectives (M. Las Vergnas [LV])

Definition. Let M and M' be two matroid structures on the same ground set E. They form a matroid perspective $M \rightarrow M'$ if any circuit of M is a union of circuits of M'. Equivalently, $r_M(X) - r_M(Y) \geq r_{M'}(X) - r_{M'}(Y)$ for all $Y \subseteq X \subseteq E$.

Example.

For graphs G and G^* dually embedded in a surface, then the bond matroid of G^* and the circuit matroid of G form a matroid perspective, $B(G^*) \rightarrow C(G)$.

Lemma. For any Δ-matroid D, $D_{\max} \rightarrow D_{\min}$ is a matroid perspective.

Tutte like polynomials

The Las Vergnas polynomial ([LV]) of a matroid perspective $M \rightarrow M'$.

$$T_{M \rightarrow M'}(x, y, z) := \sum_{X \subseteq M} (x - 1)^{r_{M'}(E) - r_{M'}(X)}(y - 1)^{r_M(X)}z^{r_M(E) - r_{M'}(E) - r_{M'}(X)}$$

Properties. $T_M(x, y) = T_{M \rightarrow M}(x, y, z)$; $T_{M'}(x, y) = (y - 1)^{r_{M'}(E) - r_{M'}(X)}T_{M \rightarrow M'}(x, y, \frac{1}{y-1})$.

The Bollobás-Riordan polynomial ([BR]) of a ribbon graph G.

$$R_G(X, Y, Z) := \sum_{F \subseteq G} X^{r(G) - r(F)} Y^{n(F)} Z^{k(F) - bc(F) + n(F)}$$

References

