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Motivation

m There are many virtual knots that are not distinguished by
the Jones polynomial.

m For example, both the Kishino Knot (pictured below) and

Motivation the unknot have unit Jones polynomials.

m We also want to determine whether a virtual link diagram
is actually classical.

m Can we construct an invariant that will tell us when a
virtual link has virtual crossing number zero?

Diagram of the Kishino Knot
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States of the Arrow Polynomial

m Given a virtual link diagram, a state is obtained according
to the following oriented state expansion:

The Arrow
Polynomial

m The arrows resulting from horizontal splittings are
decorated vertices; they do not indicate orientation.

m Except for the arrows, these are identical to the A and B
type smoothings for the Jones Polynomial.
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Defining the Arrow Polynomial

m If two adjacent nodes are decorated with arrows pointing

in the same direction along the loop, they "cancel.”

The Arrow
Polynomial

Reduction of Arrows

m After reducing every such pair of arrows on a loop, we call
the result a reduced loop.
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Examples of States

The Arrow
Polynomial

The Virtual Hopf Link

States of The Virtual Hopf Link
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Examples of States

The Arrow
Polynomial

The Virtualized Trefoil

States of The Virtualized Trefoil
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Evaluating States

The Arrow
Pellmemiel m Each reduced loop C has an even number of nodes 2n.

m Define (C) =1if n=0and (C) = K, if n > 0, where Ki,
Ko, ... are independent commuting variables.
m Then define (S) = [[(C).
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The Arrow Polynomial

Joseph Paugh, Definition
Justin Wu,
Gavin Zhang

State Sum of an Oriented Virtual Link. The arrow polynomial
{K)a of an oriented virtual link K is the polynomial in
The Arrow Z[A, A7 K1, Ko, .. .] defined by

Polynomial
(Koa = D AT 0dPITS),
S

where:
m « is the number of smoothings in S with coefficient A;
m 3 is the number of smoothings in S with coefficient A~1;
md=-A2—A2

m |S| is the number of loops in S.
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Example: The Virtual Hopf Link

m Call the left state S; and
the right state Sp. Then
<51> =1, <52> = Ki, and

The Arrow |S1] = |S2| = 1.

Polynomial

m Therefore, the arrow
polynomial of this link is

<VHL>A _ A—ldO + AdOKl The Virtual HOpf Link

=A+ KA

States
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Example: The Virtualized Trefoil

The Arrow
Polynomial

m Labeled 1 — 8 from left-to-right and top-to-bottom, the
summands contributed by each of these eight states are:

State 1: Aldl = —A3— A1 State5: A 3dl=—A5_ A1

State 2: A3d0 = A3 State 6: Ald1K? = (—A3 — A"1)K?
State 3: A~1d% = A1 State 7: Ald*K?Z = (—A3 - A"H)K?
State 4: A~1d0 = A1 State 8: A~1d2K2 = (A3+ A5+ 24 1)K?2

m Therefore, the virtualized trefoil has arrow polynomial
(VTH)a=—A"%+ A5KZ — A3K2.
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The (Near) Invariance of the Arrow Polynomial

Joseph P
Justin
savin Zhang

Theorem

Invariance

Let K be a virtual link diagram. The polynomial (KA is
invariant under the Reidemeister moves Il and Ill and virtual
Reidemeister moves.
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Virtual Reidemeister Move Invariance

Invariance

Virtual Reidemeister Moves

m Invariance under the Virtual Reidemeister Moves I-Ill is
obvious: these moves only involve virtual crossings.

m Invariance under the Virtual Reidemeister IV move can be
seen by applying the skein relation and the Virtual

Reidemeister IV move.
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Reidemeister Il Invariance

m Reidemeister Il invariance follows from direct computation:

Invariance

Reidemeister I, Type 1
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Reidemeister |l Invariance

Invariance

Reidemeister Il, Type 2
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Reidemeister Ill Invariance

m To prove invariance, we independently reduce the two
diagrams related by the Reidemeister |l move:

Invariance

Reidemeister Il Left Side
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Reidemeister Ill Invariance

Invariance

Reidemeister Il Right Side

m Note that both diagrams yield the same states.
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What about Reidemeister | Moves?

m A Reidemeister | move changes (K)4 by a factor of —A~3
or —A3, according to the sign of the crossing.

Invariance

Reidemeister | Calculation on a Negative Crossing
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The Normalized Arrow Polynomial

m By normalizing the arrow polynomial, we obtain invariance

tin

i e under Reidemeister | moves:
The (Normalized) Arrow Polynomial. The normalized arrow
invariance polynomial of an oriented virtual link K is the polynomial

(K5na € Z[A, AL, K1, K, . .. defined by
(Kona = (=A%) UK 4,
where w(K) denotes the writhe of K.

m By the previous theorem, (K)pa is invariant under the
virtual and classical Reidemeister moves.
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Normalized Virtual Hopf Link

m Recall that the Virtual Hopf Link (VHL) has arrow
polynomial
(VHLYA = A7t + KA.

m Given that w(VHL) = —1, the normalized arrow
polynomial for the Virtual Hopf Link is

Invariance

(VHLYna = —A3 (A7 + K1 A).

m Likewise, the Virtualized Trefoil (VT) has arrow
polynomial

(VTH)a =A%+ A5KE — A3KE.

m Since w(VT) =1,

(VT na = —A3(—A7% + AKZ — A3KD).
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The Arrow Number and Virtual Crossings

m Using the arrow polynomial, we obtain a lower bound on
the virtual crossing number of a virtual link diagram.
First, we need the following definition:

The k-degree of the product A™(K2KZ ... KI*) is defined to be
Main Result

i1 X j1+ i X o+ -4y X jy.

m The k-degree of a summand of {(K)a equals half the
number of vertices in the reduced state associated to the
summand.

m Notation: AS(K) denotes the set of k-degrees obtained
from summands of (K)a.
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Main Result

Theorem (Dye, Kauffman)

The Arrow Polynomial of Classical Links. If K is a classical link
diagram, then AS(K) = {0}.

Main Result m More generally, we have the following important result:

Theorem (Dye, Kauffman)

Let K be a virtual link diagram. Then the virtual crossing
number of K, v(K), is greater than or equal to the maximum
k-degree of (K)a.
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Proof ldea

m Given a state S of the arrow polynomial of K, we
construct a classical link diagram A(S).

m Start with an alternating 0 — 1 edge labeling of S.

Main Resul . . . .
=i Resut m Convert virtual crossings to classical crossings: edges

labeled 1 will always pass over edges labeled 0, and
otherwise the strand that passes from left to right (in the
direction of the diagram) will be the overcrossing strand.
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Proof ldea

m We resolve each horizontal
smoothing according to
the right-hand diagram.

m If a crossing results, the 0
strand always passes over
Main Result the 1 strand.
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Proof ldea

The resulting link diagram A(S) has the following properties:

m The sum of crossing signs where a 1 strand passes over a 0
strand never exceeds the number of virtual crossings in K.

m The sum of crossing signs where a 0 strand passes over a

Main Result 1 strand equals the k-degree of S for some labeling.
m The latter two sums are equal.

m This applies to the representation of K with the least
number of virtual crossings v(K), and to any state S
whose k-degree is max{AS(K)}; the theorem follows.
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Example

The Virtual Hopf Link (VHL) has arrow polynomial
AL+ KA.

m AS(VHL) = {0,1}, so v(VHL) > 1.

m We have a diagram of the Virtual Hopf Link with one
crossing:

Main Result

hence v(VHL) < 1.

m Thus v(VHL) = 1, so the Virtual Hopf Link is not
classical.
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Example

m The Virtualized Trefoil (VT) has arrow polynomial
—A7% + ATPK2 — A3K2.

m Thus AS(VT) ={0,2} and v(VT) > 2.

m We have a diagram of the Virtualized Trefoil with two
crossings:

Main Result

hence v(VT) < 2.
m Thus v(VT) = 2, so the Virtualized Trefoil is not classical.
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