

Counting Acyclic Orientations of Signed Graphs

A Generalization of Stanley's Symmetric Acyclicity Theorem

Oscar Coppola, Mikey Reilly

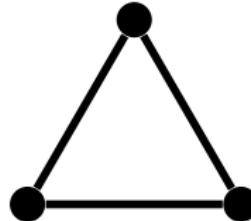
Knots & Graphs Research Group at OSU

YMC 2021

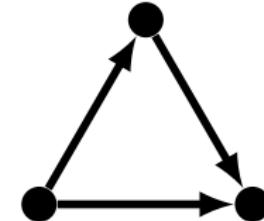
Oriented Graphs

An orientation of a graph is a way of assigning an arrow to each edge.

Graph



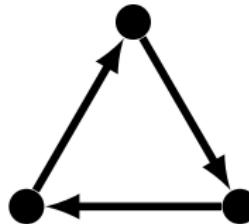
Oriented graph



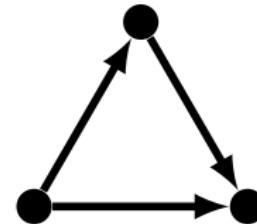
Cycles

An oriented graph is called cyclic if it is possible to start at some vertex and follow the arrows until you end up where you started. Such a path is called a *cycle*.

Cyclic Graph



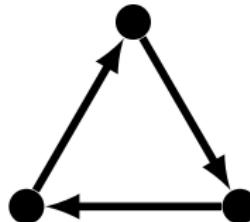
Acyclic graph



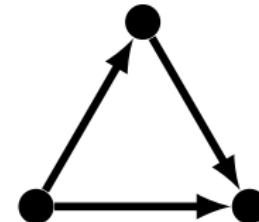
Cycles

An oriented graph is called cyclic if it is possible to start at some vertex and follow the arrows until you end up where you started. Such a path is called a *cycle*.

Cyclic Graph



Acyclic graph

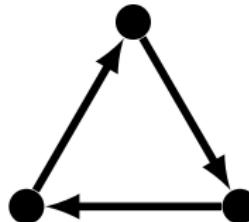


Every acyclic oriented graph must have a vertex which has only arrows going into it, called a *sink*, and a vertex which has only arrows coming out of it, called a *source*.

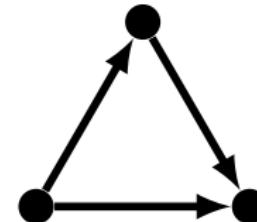
Cycles

An oriented graph is called cyclic if it is possible to start at some vertex and follow the arrows until you end up where you started. Such a path is called a *cycle*.

Cyclic Graph



Acyclic graph



Every acyclic oriented graph must have a vertex which has only arrows going into it, called a *sink*, and a vertex which has only arrows coming out of it, called a *source*.

Another way of defining a cycle is as a closed path which contains no sinks or sources.

Counting Acyclicities

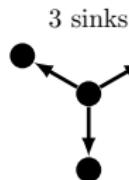
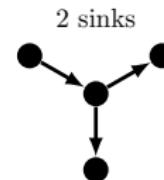
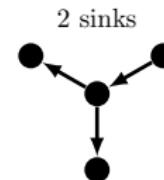
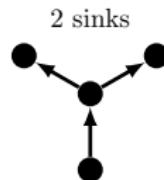
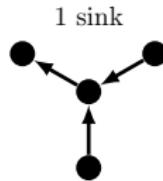
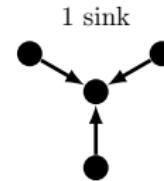
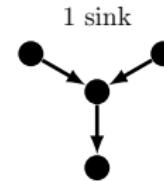
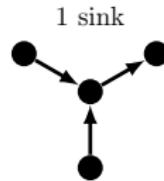
Question: Given a graph G , how many acyclic orientations of G have a certain number of sinks?

For example, consider the graph $G =$

Counting Acyclicities

Question: Given a graph G , how many acyclic orientations of G have a certain number of sinks?

For example, consider the graph $G =$



G has 1 orientation with 3 sinks, 3 orientations with 2 sinks and 4 orientations with 1 sink.

Symmetric Chromatic Function

In 1995, Richard Stanley introduced the *Symmetric Chromatic Function*, X_G , of a graph G as a tool for investigating properties of graphs.

$$X_G(x_1, x_2, \dots) = \sum_{\kappa \text{ is a proper coloring of } G} x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_n)}$$

Where v_1, v_2, \dots, v_n are the vertices of G .

Symmetric Chromatic Function

In 1995, Richard Stanley introduced the *Symmetric Chromatic Function*, X_G , of a graph G as a tool for investigating properties of graphs.

$$X_G(x_1, x_2, \dots) = \sum_{\substack{\kappa \text{ is a proper} \\ \text{coloring of } G}} x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_n)}$$

Where v_1, v_2, \dots, v_n are the vertices of G .

Suppose G is the graph (a complete graph with 2 vertices), then $X_G = \sum_{\substack{i,j \in \mathbb{N} \\ i \neq j}} x_i x_j$

Symmetric Chromatic Function

In 1995, Richard Stanley introduced the *Symmetric Chromatic Function*, X_G , of a graph G as a tool for investigating properties of graphs.

$$X_G(x_1, x_2, \dots) = \sum_{\substack{\kappa \text{ is a proper} \\ \text{coloring of } G}} x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_n)}$$

Where v_1, v_2, \dots, v_n are the vertices of G .

Suppose G is the graph (two vertices connected by a double edge), then $X_G = \sum_{\substack{i,j \in \mathbb{N} \\ i \neq j}} x_i x_j$

The *elementary symmetric functions* are

$$e_n = \sum_{0 < i_1 < \dots < i_n} x_{i_1} x_{i_2} \cdots x_{i_n} \text{ and so } X_G = 2e_2$$

Stanley's Theorem

Theorem (Stanley)

When X_G is expressed in the elementary basis, the sum of the coefficients of the terms with k factors, is equal to the number of acyclic orientations of G with k sinks.

Stanley's Theorem

Theorem (Stanley)

When X_G is expressed in the elementary basis, the sum of the coefficients of the terms with k factors, is equal to the number of acyclic orientations of G with k sinks.

$$\begin{aligned} X \bullet \begin{array}{c} \bullet \\ \backslash \quad / \\ \bullet - \bullet \\ | \quad | \\ \bullet \end{array} &= 5e_1e_3 + e_1^2e_2 - 2e_2^2 + 4e_4 \\ &= (4e_4) + (5e_1e_3 - 2e_2e_2) + (e_1e_1e_2) \end{aligned}$$

Stanley's Theorem

Theorem (Stanley)

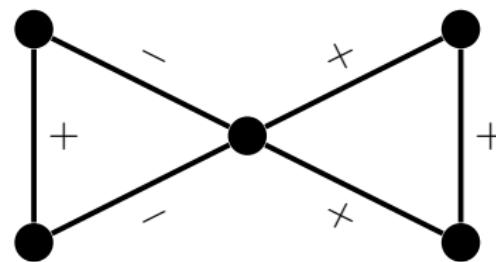
When X_G is expressed in the elementary basis, the sum of the coefficients of the terms with k factors, is equal to the number of acyclic orientations of G with k sinks.

$$\begin{aligned} X \bullet \begin{array}{c} \bullet \\ \diagup \quad \diagdown \\ \bullet \quad \bullet \end{array} &= 5e_1e_3 + e_1^2e_2 - 2e_2^2 + 4e_4 \\ &= (4e_4) + (5e_1e_3 - 2e_2e_2) + (e_1e_1e_2) \end{aligned}$$

So there are 4 acyclic orientations with 1 sink, $5 - 2 = 3$ with 2 sinks, and 1 with 3 sinks.

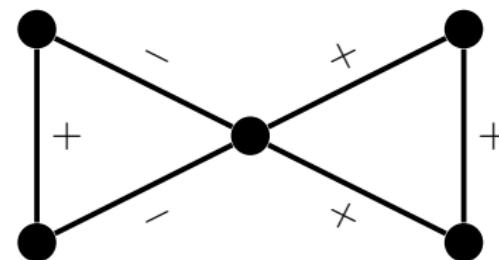
The Land of Signed Graphs

A signed graph is a graph where each edge has either a plus sign or a minus sign. The sign of an edge e is $\sigma(e)$.



The Land of Signed Graphs

A signed graph is a graph where each edge has either a plus sign or a minus sign. The sign of an edge e is $\sigma(e)$.



Signed edges have special interactions with graph colorings and orientations.

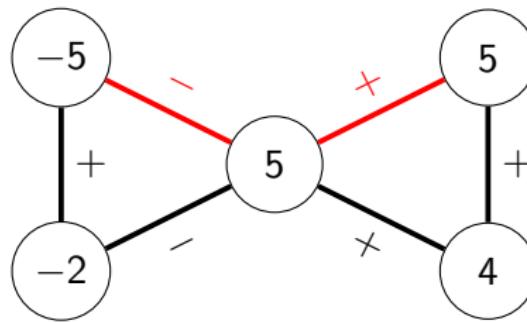
Colorings

Signed graphs can be colored using colors from \mathbb{Z} , as opposed to unsigned graphs which are colored using the colors $1, 2, \dots$

Colorings

Signed graphs can be colored using colors from \mathbb{Z} , as opposed to unsigned graphs which are colored using the colors $1, 2, \dots$

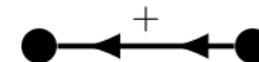
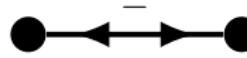
Two vertices u, v are improperly colored if there is an edge e connecting them and $\kappa(u) = \sigma(e)\kappa(v)$.



A coloring is proper if no vertices are improperly colored.

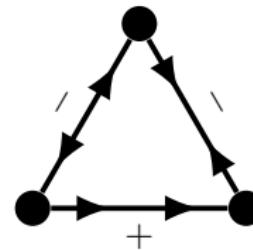
Orientations

Edges can be oriented differently according to the sign of the edge.



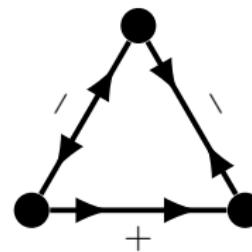
Acyclicity

A signed graph has a cycle if there is a closed path which contains no sinks or sources.



Acyclicity

A signed graph has a cycle if there is a closed path which contains no sinks or sources.



So, a signed graph is acyclic iff every closed path contains a sink or a source vertex.

B-Symmetric Chromatic Function

In analogy with Stanley's work, we can define the *B-Symmetric Chromatic Function* X_Σ of a signed graph Σ , in the variables

$\dots, x_{-1}, x_0, x_1, \dots$

$$X_\Sigma(\dots, x_{-1}, x_0, x_1, \dots) = \sum_{\substack{\kappa \text{ is a proper} \\ \text{coloring of } \Sigma}} x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_n)}$$

Where v_1, v_2, \dots, v_n are the vertices of Σ .

B-Symmetric Chromatic Function

In analogy with Stanley's work, we can define the *B-Symmetric Chromatic Function* X_Σ of a signed graph Σ , in the variables $\dots, x_{-1}, x_0, x_1, \dots$

$$X_\Sigma(\dots, x_{-1}, x_0, x_1, \dots) = \sum_{\substack{\kappa \text{ is a proper} \\ \text{coloring of } \Sigma}} x_{\kappa(v_1)} x_{\kappa(v_2)} \cdots x_{\kappa(v_n)}$$

Where v_1, v_2, \dots, v_n are the vertices of Σ .

If Σ is the signed graph , then

$$X_\Sigma = \left(\sum_{i \in \mathbb{Z}} x_i \right)^2 - \sum_{i \in \mathbb{Z}} x_i x_{-i}$$

Generalization

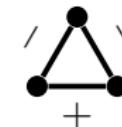
Let $e_n(\dots, x_{-1}, x_0, x_1, \dots) = \sum_{i_1 < i_2 < \dots < i_n} x_{i_1} x_{i_2} \dots x_{i_n}$ for $n \in \mathbb{N}$.

Theorem

Then there exists families of functions $\{q_{a,b} \mid a, b \geq 1\}$ and $\{z_n \mid n = 0, 1, \dots\}$ such that any X_Σ can be uniquely expressed in terms of sums and products of elements from $\{e_n \mid n = 1, 2, \dots\} \cup \{q_{a,b} \mid a, b \geq 1\} \cup \{z_n \mid n = 0, 1, \dots\}$ and when written this way, the sum of the coefficients of the all of the terms of the form $\left(\prod q_{a,b} \cdot \prod z_n\right) \cdot e_{n_1} \dots e_{n_k}$, is the number of acyclic orientations of Σ with k sinks.

Example

For example, let Σ be the signed graph



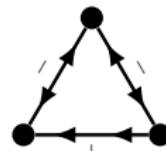
Then

$$X_{\Sigma} = 2e_1e_2 + 2q_{1,1}e_1 + 2q_{2,1}$$

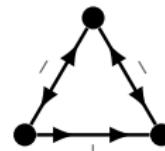
And so Σ has 2 acyclic orientation with 2 sinks, 2 acyclic orientations with 1 sink and 2 acyclic orientations with 0 sinks.

Example

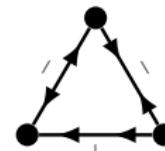
2 sinks



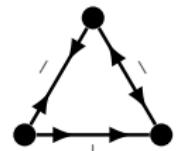
2 sinks



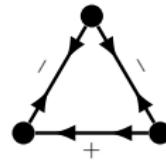
1 sink



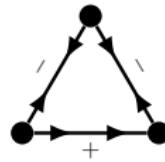
1 sink



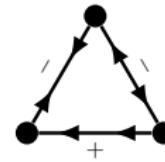
0 sinks



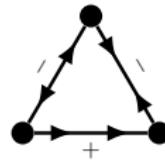
0 sinks



cyclic



cyclic



So there are 2 acyclic orientations with 2 sinks, 2 with 1 sink and 2 with no sinks.

Greatly abbreviated proof sketch

Each term of X_Σ corresponds to a coloring of Σ . We group terms of X_Σ according to which orientation the colorings correspond to. Our secret weapon is a linear and multiplicative function φ which sends the sum over all colorings corresponding to an orientation P to $t^{(\text{number of sinks of } P)}$. Hence φ sends X_Σ to a polynomial where the coefficients are the number of orientations with k sinks.

$$\begin{aligned}\varphi(X_\Sigma) &= \sum_{\text{orientations } P} t^{\text{number of sinks of } P} \\ &= \sum_{k=0}^{\infty} (\text{number of orientations with } k \text{ sinks}) \cdot t^k\end{aligned}$$

Largely truncated proof sketch

It is a lot of trouble to show that φ is well-defined and works, but after this it's straightforward to show that φ sends each element of the e -basis to t , and each other extra basis terms to 1. This gives the statement of the theorem.

$$\begin{aligned}\varphi(X_\Sigma) &= \varphi\left(\sum z_m \cdot q_{i_1, i_2} \cdots q_{i_{l-1}, i_l} \cdot e_{n_1} \cdots e_{n_k}\right) \\ &= \sum \varphi(z_m) \cdot \varphi(q_{i_1, i_2}) \cdots \varphi(q_{i_{l-1}, i_l}) \cdot \varphi(e_{n_1}) \cdots \varphi(e_{n_k}) \\ &= \sum 1 \cdot 1 \cdots 1 \cdot \underbrace{t \cdots t}_{k \text{ times}} \\ &= \sum_{k=0}^{\infty} (\text{number of terms with } k \text{ 'e' factors}) \cdot t^k\end{aligned}$$

Acknowledgements

We would like to thank

- ▶ Dr. Chmutov
- ▶ Jake Huryn
- ▶ The Knots & Graphs research program at OSU
- ▶ The audience

Sources

- ▶ R. Stanley, A symmetric function generalization of the chromatic polynomial of a graph, *Advances in Math.* 111(1) (1995) 166–194.
- ▶ T. Zaslavsky, Signed graph coloring, *Discrete Mathematics* 39(2) (1982) 215–228.