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What is a Spatial Embedding?

For our purposes, considering a graph as a topological object,

Definition

A Spatial Embedding of a graph G is the image of a injective
continuous map f : G → R3

Note that the Spatial Graph’s vertices can take any shape we want
when it is projected down to R2

A Spatial Embedding of K6 projected to R2:
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The Theorems in Question

Theorem

Every Spatial Embedding of K6 contains a non-trivial link

Theorem

Every Spatial Embedding of K7 contains a non-trivial knot
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Idea of the Proof

Theorem

Every Spatial Embedding of K6 contains a non-trivial link

The idea of this proof stems from this, which we will not prove:

Lemma

Let G ′ and G ′′ be spatial embeddings of the same graph. Then, G ′

can be transformed to G ′′ by a series of crossing changes and
isotopies

This means that if we can find an invariant that doesn’t change
over both these operations, we can get information about all
possible spatial embeddings from a single embedding!
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Linking Number

Each crossing in a projection of an oriented link can be classified as
positive or negative by rotating the the crossing to match one of
the following:

The linking number of a 2-component link is calculated by
assigning each positive crossing a value of +1/2 and each negative
crossing a value of −1/2, and then adding these values over all
crossings of the two components with eachother.
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Linking Number

Since changing the orientation of a component will switch the sign
of every crossing, doing so will multiply the linking number by −1.
Therefore orientation changes only affect the sign of the linking
number.

Because of this, the linking number of an unoriented link is defined
as the absolute value of the linking number obtained by assigning
arbitrary orientations to each component.
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Linking Number

For the proof of theorem 1, we’ll be considering the linking number
mod 2, so let lk(L1, L2) denote the linking number of L1 and L2

mod 2.
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The Proof, Part 1

The invariant we will consider is

Ω =
∑

(L1,L2)

lk(L1, L2) (mod 2)

Where L1 and L2 are two disjoint triangles in a Spatial Embedding
of K6. This invariant clearly doesn’t change over isotopy, as the
linking number doesn’t change over isotopies.
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Part 2

Now let’s consider the effect that a crossing change has on Ω.
There are some cases to consider:

1 The crossing is between an edge with itself

2 The crossing is between two adjacent edges

3 The crossing is between two non-adjacent distinct edges

Since the calculation of linking number only considers crossings
involving both components, crossings of the first two types do not
contribute to the linking number, thus changing those crossings
does not affect Ω. (Adjacent edges cannot be part of different
triangles since L1 and L2 are disjoint.)
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Part 2, Third Case

Now, we must consider the third case: the crossing is between two
non-adjacent distinct edges. This can only affect Ω when one edge
is in L1 and the other is in L2.
Since a crossing change switches the sign of that crossing, the
contribution of this crossing to the linking number will switch from
∓1/2 to ±1/2. Thus any pair (L1, L2) which has this crossing
between L1 and L2 will have its linking number change by ±1 due
to the crossing change.
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Part 2, Third Case

Next, for any non-adjacent distinct edges A,B, we must count how
many pairs of disjoint triangles (L1, L2) in K6 there are such that A
is in one triangle and B is in the other.

Without loss of generality, assume that A ⊂ L1 and B ⊂ L2.

Label the vertices of the graph v1, . . . , v6 such that A connects v1

and v2, and B connects v3 and v4. It can be seen that there are
two pairs (L1, L2) which meet these conditions:

{v1, v2, v5} ⊂ L1, {v3, v4, v6} ⊂ L2

{v1, v2, v6} ⊂ L1, {v3, v4, v5} ⊂ L2
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Thus for any pair of non-adjacent distinct edges A,B, performing a
crossing change results in all affected pairs (L1, L2) changing their
crossing number by ±1, and there are two pairs (L1, L2) affected
by this change, so Ω (the sum of linking numbers of all pairs
mod 2) is changed by a multiple of 2 due to the crossing change.

Since Ω ∈ Z2, this means Ω is unchanged by a crossing change
between two non-adjacent distinct edges.

Therefore Ω is also invariant under crossing changes.
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Part 3

Since any spatial embedding of a graph can be transformed to any
other embedding of the same graph using only crossing changes
and isotopies (from the Lemma at beginning of proof), it follows
that Ω is the same for all possible spatial embeddings of K6.

If we can show that some spatial embedding of K6 has Ω = 1, then
every spatial embedding of K6 must have Ω = 1, which means that
every spatial embedding contains at least 1 pair of distinct
triangles (L1, L2) for which lk(L1, L2) = 1. Since an odd linking
number must be nonzero, and the trivial link (unlink) has linking
number zero, this means that L1 and L2 are non-trivially linked.
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Part 3

Consider the following spatial embedding of K6 projected down to
R2.

To calculate the value of Ω for this embedding, we must find the
linking number of all 1

2

(6
3

)
= 10 pairs of disjoint triangles.
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These seven pairs of triangles do not cross at all, thus each pair is
the trivial link (linking number zero).
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These two pairs do cross, but in both cases the red triangle is
clearly on top of the other, so both pairs are the trivial link again.
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Part 3

The final pair of triangles is linked with linking number 1.

Hence Ω = 1 for this embedding, and thus all embeddings of K6.

This completes the proof of Theorem 1.
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Idea of the Proof

Theorem

Every Spatial Embedding of K7 contains a non-trivial knot

The idea is much the same as in proof 1:

1 Find an invariant over Isotopy and Crossing changes

2 Find a Spatial Embedding of K7 that has a good value for the
invariant
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The Invariant in Question

The critical element of the last proof was to find an invariant over
Isotopy and Crossing changes. In that proof, we used the sum of
linking numbers mod 2.

In this proof, we’re going to be using the sum of the arf invariant
of knots, denoted α(γ) for a knot γ.

In general, the definition can be seen in a couple ways, and is
relatively complicated, so we’ll only mention the important facts
about it.
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The Arf Invariant’s Special Property

If K is a knot, for any given crossing we can define K+ = K and
K− given by switching the crossing. Finally, we can produce a link
by splitting the crossing as shown:

Let L1, L2 be the components of L. Then,

α(K+) = α(K−) + lk(L1, L2) (mod 2)

Stephen Forest, Aditya Jambhale, James Longo The Conway-Gordon Theorems



Introduction
Proof of Theorem 1
Proof of Theorem 2

Generalization of Theorem 2

Idea of the Proof
Arf Invariant
Simplification of Cases
Counting Arguments
End of Proof

The Spatial Embedding Invariant

As you can guess, the invariant we will use for this proof is

S =
∑
γ

α(γ) (mod 2),

where the sum is over all Hamiltonian cycles γ in a spatial
embedding of K7.

Just as before it is clear that S is invariant over isotopies, as the
arf invariant is invariant over isotopies.
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Three Cases

Like in the proof for Theorem 1, we have three cases for crossing
changes:

1 The crossing is between an edge with itself

2 The crossing is between two adjacent edges

3 The crossing is between two non-adjacent distinct edges

This time, we can’t ignore case 1 as easily, and we can’t ignore
case 2 at all.
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Ignoring Case 1

If an edge has a self crossing, we can perform the following move
to change it into a bunch of crossings between distinct edges:
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Further Remarks on the Linking Number

Let ω(L1, L2) be the number of times L1 crosses over L2 mod 2. It
can be shown that for any link, ω(L1, L2) = lk(L1, L2) (mod 2) .

In this theorem we are considering links which are formed out of
edges of a graph. So, for two edges A, B, let ω(A,B) be the
number of times A crosses over B mod 2. Then,

lk(L1, L2) =
∑

A⊂L1,B⊂L2

ω(A,B) (mod 2)
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What are We counting?

For any crossing change, if γ is a Hamiltonian cycle that contains
both edges involved in that crossing, then

α(γ) = α(γ′) + lk(L1, L2) (mod 2)

If γ does not contain both edges involved, then α(γ) is unchanged.
So,

S = S ′ +
∑
γ

lk(L1, L2) (mod 2)

where the sum is over all Hamiltonian cycles γ which contain both
edges involved in the crossing.
Ultimately, we’re going to be counting the number of such γ in
each case.
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Counting Arguments, Part 1

Suppose A,B are distinct adjacent edges. Then, through isotopy,
we can locally get the crossing between them to look like this:

In this case, L1 consists of one edge and L2 is the rest of the γ not
involved in the crossing change, so

lk(L1, L2) =
∑
E⊂γ

E 6=A,B

ω(L1,E ) (mod 2)

S = S ′ +
∑
γ⊃A,B

∑
E⊂γ

E 6=A,B

ω(L1,E ) (mod 2)
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Part 1 Cont.

S = S ′ +
∑
γ⊃A,B

∑
E⊂γ

E 6=A,B

ω(L1,E ) (mod 2)

We can switch the order of summation, becoming

S = S ′ +
∑

E 6=A,B

 ∑
γ⊃E ,A,B

ω(L1,E )

 (mod 2)

S = S ′ +
∑

E 6=A,B

ω(L1,E )
∑

γ⊃E ,A,B
1

 (mod 2)

So, to show S = S ′, it is sufficient for there to be an even number
of γ ⊃ E ,A,B.
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Part 1 Cont.

We will resolve all possible cases. First, if E ,A,B have a common
vertex, then trivially, the number of Hamiltonian cycles is 0 (as the
same vertex would have to be revisited to traverse all 3 of them).
Similarly, if E is adjacent to both A and B, there are no
Hamiltonian cycles.
Suppose that E is adjacent to exclusively one of A,B. Without
loss of generality, we consider the A case.
Otherwise,
Thus, as there are an even number of γ, it follows that S = S ′.
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Part 2

Now, suppose we have two distinct edges. Then, the crossing and
resulting link look like

As in part 1,

lk(L1, L2) =
∑
E1⊂L1
E2⊂L2

ω(E1,E2) (mod 2),

so
S = S ′ +

∑
γ⊃A,B

∑
E1⊂L1
E2⊂L2

ω(E1,E2) (mod 2)
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Part 2

Again, we can switch summations to get

S = S ′ +
∑

E1,E2 6=A,B

 ∑
γ⊃E1,E2,A,B

ω(E1,E2)

 (mod 2)

S = S ′ +
∑

E1,E2 6=A,B

ω(E1,E2)
∑

γ⊃E1,E2,A,B

1

 (mod 2)

Here, the summation is over unordered pairs {E1,E2}. So it
suffices to show that the number of paths γ ⊃ E1,E2,A,B is even
for all possible E1,E2.
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Part 2 Cont.
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End of Proof

From the previous slides, we have shown that the sum of the Arf
invariants S is invariant under isotopy and crossing changes, thus
by the same Lemma used in the first theorem, S is the same for all
spatial embeddings for K7.

Following the process of the first theorem, all that is left is to
verify that S = 1 for some embedding of K7
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End of Proof

Consider the following spatial embedding of K7 projected to R2.

It will be shown that this embedding has S = 1.
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Calculating S

One way to determine S would be to list all 1
2 6! = 360

Hamiltonian cycles, then determine what knot each one forms.

However, in this case almost all cycles create the unknot, which
has an arf invariant of zero, thus does not contribute to S .

Therefore it will be easier to find all nontrivial knots which are also
Hamiltonian cycles using another method (which does not involve
checking hundreds of cycles).
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Calculating S

First, label each crossing:

Every Hamiltonian cycle uses some (possibly empty) subset of
these 9 crossings.
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Calculating S

Every nontrivial knot has a crossing number of at least 3.

Since we want to find all nontrivial knots, we must consider every
subset of those 9 crossings that contains at least 3 elements.
A complete list of all such subsets is:
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Calculating S

Checking all of these for a valid Hamiltonian cycle would be
unreasonable (in fact, there are more subsets here than
Hamiltonian cycles).

However, nearly all of these subsets can be eliminated without
individually checking them, since most are incompatible a
Hamiltonian cycle.
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Calculating S

Consider a cycle which uses crossings 1, 2, and 4 (and possibly
others). The following edges are necessary for those crossings:

This combination of crossings requires 3 edges that meet at the
top left vertex, so no cycles use crossings 1, 2, and 4 together.
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Calculating S

This means that any subset of the crossings that contains 1, 2, and
4 can be rejected, as no Hamiltonian cycle has those crossings.

The following triples all result in 3 edges meeting at a single vertex:

Thus any subset of the crossings containing any of these triples
can be rejected:
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Calculating S

These are the only remaining crossing subsets.

This is still too many to check, so we must find more ways to
remove large groups.
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Calculating S

Consider a cycle which uses crossings 6 and 8. The following edges
are necessary:

It can be seen that if crossings 6 and 8 are used, then 5 must also
be used. Thus any crossing subset that contains 6 and 8 but not 5
can be rejected.
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Similarly, all of the following are also invalid:
5,7 without 6 6,9 without 7 5,9 without 8 7,8 without 9

Using this information, the valid subsets are reduced to:
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Next, consider a cycle which uses crossings 1,4, and 8. The
following edges are necessary:

It can be seen that the green edges form a closed loop that does
not pass through all vertices. Thus there cannot be a Hamiltonian
cycle using crossings 1, 4, and 8.
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All of the following subsets form loops that don’t contain all
vertices, thus cannot be used in a Hamiltonian cycle:

148, 149, 346, 347, 1256, 1489, 2358, 3467, 56789

Removing these, the valid subsets are reduced to:
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Most of the remaining subsets only have 3 crossings. The only
nontrivial knot which can be drawn with 3 crossings is the trefoil
knot.

Whenever the trefoil knot is drawn with only 3 crossings, it must
be alternating. This means that as you travel around the knot, you
never have 2 overcrossings or 2 undercrossings in a row.

In other words, any knot with has only 3 crossings and is not
alternating must be the unknot.
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For example, if a 3-crossing cycle contains crossings 2 and 4, it will
have 2 overcrossings in a row, so will be the unknot.

All of the above pairs result in a non-alternating knot, thus if they
appear in a 3-crossing cycle, the resulting knot is trivial and can be
removed.
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Using this information, we can remove most of the remaining
subsets:

At this point there are only 5 sets of crossings left, so they can
easily be examined individually.
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Filling in the necessary edges for each crossing set:
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Each has 6 or 7 edges already filled, so there is only 1 way to
complete each to a Hamiltonian cycle:
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Removing unnecessary edges and widening the edges:
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Four of the cycles can easily be unknotted:
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The final cycle is a trefoil knot:

Thus out of all possible Hamiltonian cycles, one is a trefoil knot
and the rest are the unknot. Since the unknot has an arf invariant
of 0 and the trefoil knot has an arf invariant of 1, this means that
the sum of arf invariants S = 1, as we claimed.

This completes the proof of Theorem 2.
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Partial Theorem 2 for Kn

Slightly upgrading the counting argument given in theorem 2, it
can be shown that

Theorem

The sum of the Arf invariants over all Hamiltonian Cycles of Kn is
the same for all Spatial Embeddings of Kn for all n ≥ 7.

The case of n = 7 was shown in the proof of theorem 2.
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