## The Conway-Gordon Theorems

Stephen Forest, Aditya Jambhale, James Longo

## Outline

(1) Introduction

- What is a Spatial Embedding?
- The Theorems in Question
(2) Proof of Theorem 1
- Idea of the Proof
- Linking Number
- The Proof
(3) Proof of Theorem 2
- Idea of the Proof
- Arf Invariant
- Simplification of Cases
- Counting Arguments
- End of Proof
(4) Generalization of Theorem 2
- Partial Theorem 2 for $K_{n}$


## What is a Spatial Embedding?

For our purposes, considering a graph as a topological object,

## Definition

A Spatial Embedding of a graph $G$ is the image of a injective continuous map $f: G \rightarrow \mathbb{R}^{3}$

Note that the Spatial Graph's vertices can take any shape we want when it is projected down to $\mathbb{R}^{2}$
A Spatial Embedding of $K_{6}$ projected to $\mathbb{R}^{2}$ :


## The Theorems in Question

## Theorem

Every Spatial Embedding of $K_{6}$ contains a non-trivial link

## Theorem <br> Every Spatial Embedding of $K_{7}$ contains a non-trivial knot

## Idea of the Proof

## Theorem

Every Spatial Embedding of $K_{6}$ contains a non-trivial link
The idea of this proof stems from this, which we will not prove:

## Lemma

Let $G^{\prime}$ and $G^{\prime \prime}$ be spatial embeddings of the same graph. Then, $G^{\prime}$ can be transformed to $G^{\prime \prime}$ by a series of crossing changes and isotopies

This means that if we can find an invariant that doesn't change over both these operations, we can get information about all possible spatial embeddings from a single embedding!

## Linking Number

Each crossing in a projection of an oriented link can be classified as positive or negative by rotating the the crossing to match one of the following:


The linking number of a 2-component link is calculated by assigning each positive crossing a value of $+1 / 2$ and each negative crossing a value of $-1 / 2$, and then adding these values over all crossings of the two components with eachother.

## Linking Number

Since changing the orientation of a component will switch the sign of every crossing, doing so will multiply the linking number by -1 . Therefore orientation changes only affect the sign of the linking number.

Because of this, the linking number of an unoriented link is defined as the absolute value of the linking number obtained by assigning arbitrary orientations to each component.

## Linking Number

For the proof of theorem 1 , we'll be considering the linking number $\bmod 2$, so let $\operatorname{lk}\left(L_{1}, L_{2}\right)$ denote the linking number of $L_{1}$ and $L_{2}$ $\bmod 2$.

## The Proof, Part 1

The invariant we will consider is

$$
\Omega=\sum_{\left(L_{1}, L_{2}\right)} \operatorname{lk}\left(L_{1}, L_{2}\right) \quad(\bmod 2)
$$

Where $L_{1}$ and $L_{2}$ are two disjoint triangles in a Spatial Embedding of $K_{6}$. This invariant clearly doesn't change over isotopy, as the linking number doesn't change over isotopies.

Introduction
Proof of Theorem 1
Proof of Theorem 2
Generalization of Theorem 2

## Part 2

Now let's consider the effect that a crossing change has on $\Omega$. There are some cases to consider:
(1) The crossing is between an edge with itself
(2) The crossing is between two adjacent edges
(3) The crossing is between two non-adjacent distinct edges

Since the calculation of linking number only considers crossings involving both components, crossings of the first two types do not contribute to the linking number, thus changing those crossings does not affect $\Omega$. (Adjacent edges cannot be part of different triangles since $L_{1}$ and $L_{2}$ are disjoint.)

## Part 2, Third Case

Now, we must consider the third case: the crossing is between two non-adjacent distinct edges. This can only affect $\Omega$ when one edge is in $L_{1}$ and the other is in $L_{2}$.
Since a crossing change switches the sign of that crossing, the contribution of this crossing to the linking number will switch from $\mp 1 / 2$ to $\pm 1 / 2$. Thus any pair $\left(L_{1}, L_{2}\right)$ which has this crossing between $L_{1}$ and $L_{2}$ will have its linking number change by $\pm 1$ due to the crossing change.

## Part 2, Third Case

Next, for any non-adjacent distinct edges $A, B$, we must count how many pairs of disjoint triangles $\left(L_{1}, L_{2}\right)$ in $K_{6}$ there are such that $A$ is in one triangle and $B$ is in the other.

Without loss of generality, assume that $A \subset L_{1}$ and $B \subset L_{2}$.
Label the vertices of the graph $v_{1}, \ldots, v_{6}$ such that $A$ connects $v_{1}$ and $v_{2}$, and $B$ connects $v_{3}$ and $v_{4}$. It can be seen that there are two pairs $\left(L_{1}, L_{2}\right)$ which meet these conditions:

$$
\begin{aligned}
& \left\{v_{1}, v_{2}, v_{5}\right\} \subset L_{1},\left\{v_{3}, v_{4}, v_{6}\right\} \subset L_{2} \\
& \left\{v_{1}, v_{2}, v_{6}\right\} \subset L_{1},\left\{v_{3}, v_{4}, v_{5}\right\} \subset L_{2}
\end{aligned}
$$

## Part 2, Third Case

Thus for any pair of non-adjacent distinct edges $A, B$, performing a crossing change results in all affected pairs ( $L_{1}, L_{2}$ ) changing their crossing number by $\pm 1$, and there are two pairs $\left(L_{1}, L_{2}\right)$ affected by this change, so $\Omega$ (the sum of linking numbers of all pairs $\bmod 2)$ is changed by a multiple of 2 due to the crossing change.

Since $\Omega \in \mathbb{Z}_{2}$, this means $\Omega$ is unchanged by a crossing change between two non-adjacent distinct edges.

Therefore $\Omega$ is also invariant under crossing changes.

## Part 3

Since any spatial embedding of a graph can be transformed to any other embedding of the same graph using only crossing changes and isotopies (from the Lemma at beginning of proof), it follows that $\Omega$ is the same for all possible spatial embeddings of $K_{6}$.

If we can show that some spatial embedding of $K_{6}$ has $\Omega=1$, then every spatial embedding of $K_{6}$ must have $\Omega=1$, which means that every spatial embedding contains at least 1 pair of distinct triangles $\left(L_{1}, L_{2}\right)$ for which $\operatorname{lk}\left(L_{1}, L_{2}\right)=1$. Since an odd linking number must be nonzero, and the trivial link (unlink) has linking number zero, this means that $L_{1}$ and $L_{2}$ are non-trivially linked.

## Part 3

Consider the following spatial embedding of $K_{6}$ projected down to $\mathbb{R}^{2}$.


To calculate the value of $\Omega$ for this embedding, we must find the linking number of all $\frac{1}{2}\binom{6}{3}=10$ pairs of disjoint triangles.

## Part 3

These seven pairs of triangles do not cross at all, thus each pair is the trivial link (linking number zero).

$\checkmark Q \curvearrowright$

## Part 3

These two pairs do cross, but in both cases the red triangle is clearly on top of the other, so both pairs are the trivial link again.


## Part 3

The final pair of triangles is linked with linking number 1.


Hence $\Omega=1$ for this embedding, and thus all embeddings of $K_{6}$.
This completes the proof of Theorem 1.

Introduction
Proof of Theorem 1

## Idea of the Proof

## Theorem

Every Spatial Embedding of $K_{7}$ contains a non-trivial knot
The idea is much the same as in proof 1 :
(1) Find an invariant over Isotopy and Crossing changes
(2) Find a Spatial Embedding of $K_{7}$ that has a good value for the invariant

## The Invariant in Question

The critical element of the last proof was to find an invariant over Isotopy and Crossing changes. In that proof, we used the sum of linking numbers mod 2.
In this proof, we're going to be using the sum of the arf invariant of knots, denoted $\alpha(\gamma)$ for a knot $\gamma$.
In general, the definition can be seen in a couple ways, and is relatively complicated, so we'll only mention the important facts about it.


## The Arf Invariant's Special Property

If $K$ is a knot, for any given crossing we can define $K_{+}=K$ and $K_{-}$given by switching the crossing. Finally, we can produce a link by splitting the crossing as shown:

$\mathrm{K}_{+}$


K


Let $L_{1}, L_{2}$ be the components of $L$. Then,

$$
\alpha\left(K_{+}\right)=\alpha\left(K_{-}\right)+\operatorname{lk}\left(L_{1}, L_{2}\right) \quad(\bmod 2)
$$

## The Spatial Embedding Invariant

As you can guess, the invariant we will use for this proof is

$$
S=\sum_{\gamma} \alpha(\gamma) \quad(\bmod 2)
$$

where the sum is over all Hamiltonian cycles $\gamma$ in a spatial embedding of $K_{7}$.
Just as before it is clear that $S$ is invariant over isotopies, as the arf invariant is invariant over isotopies.

## Three Cases

Like in the proof for Theorem 1, we have three cases for crossing changes:
(1) The crossing is between an edge with itself
(2) The crossing is between two adjacent edges
(3) The crossing is between two non-adjacent distinct edges

This time, we can't ignore case 1 as easily, and we can't ignore case 2 at all.

## Ignoring Case 1

If an edge has a self crossing, we can perform the following move to change it into a bunch of crossings between distinct edges:


Introduction
Proof of Theorem 1

## Further Remarks on the Linking Number

Let $\omega\left(L_{1}, L_{2}\right)$ be the number of times $L_{1}$ crosses over $L_{2} \bmod 2$. It can be shown that for any link, $\omega\left(L_{1}, L_{2}\right)=\operatorname{lk}\left(L_{1}, L_{2}\right)(\bmod 2)$.

In this theorem we are considering links which are formed out of edges of a graph. So, for two edges $A, B$, let $\omega(A, B)$ be the number of times $A$ crosses over $B$ mod 2. Then,

$$
\operatorname{lk}\left(L_{1}, L_{2}\right)=\sum_{A \subset L_{1}, B \subset L_{2}} \omega(A, B) \quad(\bmod 2)
$$

## What are We counting?

For any crossing change, if $\gamma$ is a Hamiltonian cycle that contains both edges involved in that crossing, then

$$
\alpha(\gamma)=\alpha\left(\gamma^{\prime}\right)+\operatorname{lk}\left(L_{1}, L_{2}\right) \quad(\bmod 2)
$$

If $\gamma$ does not contain both edges involved, then $\alpha(\gamma)$ is unchanged. So,

$$
S=S^{\prime}+\sum_{\gamma} \operatorname{kk}\left(L_{1}, L_{2}\right) \quad(\bmod 2)
$$

where the sum is over all Hamiltonian cycles $\gamma$ which contain both edges involved in the crossing.
Ultimately, we're going to be counting the number of such $\gamma$ in each case.

## Counting Arguments, Part 1

Suppose $A, B$ are distinct adjacent edges. Then, through isotopy, we can locally get the crossing between them to look like this:


In this case, $L_{1}$ consists of one edge and $L_{2}$ is the rest of the $\gamma$ not involved in the crossing change, so

$$
\begin{aligned}
& \operatorname{lk}\left(L_{1}, L_{2}\right)=\sum_{\substack{E \subset \gamma \\
E \neq A, B}} \omega\left(L_{1}, E\right) \quad(\bmod 2) \\
& S=S^{\prime}+\sum_{\gamma \supset A, B} \sum_{\substack{E \subset \gamma \\
E \neq A, B}} \omega\left(L_{1}, E\right) \quad(\bmod 2)
\end{aligned}
$$

## Part 1 Cont.

$$
S=S^{\prime}+\sum_{\gamma \supset A, B} \sum_{\substack{E \subset \gamma \\ E \neq A, B}} \omega\left(L_{1}, E\right) \quad(\bmod 2)
$$

We can switch the order of summation, becoming

$$
\begin{aligned}
& S=S^{\prime}+\sum_{E \neq A, B}\left[\sum_{\gamma \supset E, A, B} \omega\left(L_{1}, E\right)\right](\bmod 2) \\
& S=S^{\prime}+\sum_{E \neq A, B}\left[\omega\left(L_{1}, E\right) \sum_{\gamma \supset E, A, B} 1\right](\bmod 2)
\end{aligned}
$$

So, to show $S=S^{\prime}$, it is sufficient for there to be an even number of $\gamma \supset E, A, B$.

## Part 1 Cont.

We will resolve all possible cases. First, if $E, A, B$ have a common vertex, then trivially, the number of Hamiltonian cycles is 0 (as the same vertex would have to be revisited to traverse all 3 of them). Similarly, if $E$ is adjacent to both $A$ and $B$, there are no Hamiltonian cycles.
Suppose that $E$ is adjacent to exclusively one of $A, B$. Without loss of generality, we consider the $A$ case.
Otherwise,
Thus, as there are an even number of $\gamma$, it follows that $S=S^{\prime}$.


## Part 2

Now, suppose we have two distinct edges. Then, the crossing and resulting link look like


As in part 1,

$$
\operatorname{lk}\left(L_{1}, L_{2}\right)=\sum_{\substack{E_{1} \subset L_{1} \\ E_{2} \subset L_{2}}} \omega\left(E_{1}, E_{2}\right) \quad(\bmod 2),
$$

so

$$
S=S^{\prime}+\sum_{\gamma \supset A, B} \sum_{\substack{E_{1} \subset L_{1} \\ E_{2} \subset L_{2}}} \omega\left(E_{1}, E_{2}\right) \quad(\bmod 2)
$$

## Part 2

Again, we can switch summations to get

$$
\begin{aligned}
& S=S^{\prime}+\sum_{E_{1}, E_{2} \neq A, B}\left[\sum_{\gamma \supset E_{1}, E_{2}, A, B} \omega\left(E_{1}, E_{2}\right)\right](\bmod 2) \\
& S=S^{\prime}+\sum_{E_{1}, E_{2} \neq A, B}\left[\omega\left(E_{1}, E_{2}\right) \sum_{\gamma \supset E_{1}, E_{2}, A, B} 1\right](\bmod 2)
\end{aligned}
$$

Here, the summation is over unordered pairs $\left\{E_{1}, E_{2}\right\}$. So it suffices to show that the number of paths $\gamma \supset E_{1}, E_{2}, A, B$ is even for all possible $E_{1}, E_{2}$.

Idea of the Proof
Arf Invariant
Simplification of Cases
Counting Arguments
End of Proof

## Part 2 Cont.

## End of Proof

From the previous slides, we have shown that the sum of the Arf invariants $S$ is invariant under isotopy and crossing changes, thus by the same Lemma used in the first theorem, $S$ is the same for all spatial embeddings for $K_{7}$.
Following the process of the first theorem, all that is left is to verify that $S=1$ for some embedding of $K_{7}$

## End of Proof

Consider the following spatial embedding of $K_{7}$ projected to $\mathbb{R}_{2}$.


It will be shown that this embedding has $S=1$.

## Calculating S

One way to determine $S$ would be to list all $\frac{1}{2} 6!=360$ Hamiltonian cycles, then determine what knot each one forms.
However, in this case almost all cycles create the unknot, which has an arf invariant of zero, thus does not contribute to $S$.

Therefore it will be easier to find all nontrivial knots which are also Hamiltonian cycles using another method (which does not involve checking hundreds of cycles).

## Calculating S

First, label each crossing:


Every Hamiltonian cycle uses some (possibly empty) subset of these 9 crossings.

## Calculating $S$

Every nontrivial knot has a crossing number of at least 3.
Since we want to find all nontrivial knots, we must consider every subset of those 9 crossings that contains at least 3 elements.
A complete list of all such subsets is:

Introduction
Proof of Theorem 1
Proof of Theorem 2
Generalization of Theorem 2

Idea of the Proof Arf Invariant Simplification of Cases Counting Arguments
End of Proof

## Calculating S



## Calculating S

Checking all of these for a valid Hamiltonian cycle would be unreasonable (in fact, there are more subsets here than Hamiltonian cycles).

However, nearly all of these subsets can be eliminated without individually checking them, since most are incompatible a Hamiltonian cycle.

## Calculating S

Consider a cycle which uses crossings 1, 2, and 4 (and possibly others). The following edges are necessary for those crossings:


This combination of crossings requires 3 edges that meet at the top left vertex, so no cycles use crossings 1,2 , and 4 together.

## Calculating S

This means that any subset of the crossings that contains 1,2 , and 4 can be rejected, as no Hamiltonian cycle has those crossings.

The following triples all result in 3 edges meeting at a single vertex:

| 1 | 2 | 4 | 1 | 6 | 7 | 2 | 6 | 9 | 3 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 3 | 4 | 1 | 6 | 8 | 2 | 7 | 8 | 4 | 5 | 6 |
| 1 | 3 | 6 | 1 | 6 | 9 | 2 | 8 | 9 | 4 | 5 | 7 |
| 1 | 3 | 7 | 1 | 7 | 8 | 3 | 5 | 7 | 4 | 5 | 8 |
| 1 | 3 | 8 | 1 | 7 | 9 | 3 | 5 | 9 | 4 | 5 | 9 |
| 1 | 3 | 9 | 2 | 3 | 4 | 3 | 6 | 8 | 4 | 6 | 8 |
| 1 | 5 | 7 | 2 | 5 | 7 | 3 | 6 | 9 | 4 | 6 | 9 |
| 1 | 5 | 9 | 2 | 5 | 9 | 3 | 7 | 8 | 4 | 7 | 8 |

Thus any subset of the crossings containing any of these triples can be rejected:

Idea of the Proof
Arf Invariant
Simplification of Cases
Counting Arguments
End of Proof

## Calculating S



## Calculating S

These are the only remaining crossing subsets.

| 1 | 2 | 3 | 1 | 5 | 6 | 2 | 5 | 6 | 4 | 7 | 9 | 1 | 2 | 3 | 5 |  | 2 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$| 2$

This is still too many to check, so we must find more ways to remove large groups.

## Calculating $S$

Consider a cycle which uses crossings 6 and 8 . The following edges are necessary:


It can be seen that if crossings 6 and 8 are used, then 5 must also be used. Thus any crossing subset that contains 6 and 8 but not 5 can be rejected.

## Calculating $S$

Similarly, all of the following are also invalid: 5,7 without 6 6,9 without $7 \quad 5,9$ without $8 \quad 7,8$ without 9

Using this information, the valid subsets are reduced to:

| 1 | 2 | 3 | 1 | 5 | 6 | 2 | 5 | 6 | 4 | 7 | 9 | 1 | 2 | 3 | 5 | 2 | 5 | 6 | 8 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 5 | 1 | 5 | 8 | 2 | 5 | 8 | 4 | 8 | 9 | 1 | 2 | 5 | 6 |  | 3 | 4 | 6 | 7 |
| 1 | 2 | 6 | 1 | 8 | 9 |  |  |  | 5 | 6 | 7 | 1 | 2 | 5 | 8 |  |  |  |  |  |
| 1 | 2 | 7 | 2 | 3 | 5 | 2 | 7 | 9 | 5 | 6 | 8 | 1 | 4 | 8 | 9 |  |  |  |  |  |
| 1 | 2 | 8 | 2 | 3 | 6 | 3 | 4 | 5 |  |  |  | 2 | 3 | 5 | 6 |  |  |  |  |  |
| 1 | 2 | 9 | 2 | 3 | 7 | 3 | 4 | 6 |  |  |  | 2 | 3 | 5 | 8 |  |  |  |  |  |
| 1 | 3 | 5 | 2 | 3 | 8 | 3 | 4 | 7 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 4 | 5 | 2 | 3 | 9 | 3 | 4 | 8 | 5 | 8 | 9 | 2 | 4 | 4 | 7 | 9 |  |  |  |  |
| 1 | 4 | 6 | 2 | 4 | 5 | 3 | 4 | 9 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 4 | 7 | 2 | 4 | 6 | 3 | 5 | 6 | 6 | 7 | 9 |  |  |  |  |  |  |  |  |  |
| 1 | 4 | 8 | 2 | 4 | 7 | 3 | 5 | 8 |  |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 4 | 9 | 2 | 4 | 8 | 3 | 6 | 7 | 7 | 8 | 9 |  |  |  |  |  |  |  |  |  |
|  |  |  | 2 | 4 | 9 | 4 | 6 | 7 |  |  |  |  |  |  |  | 5 | 6 | 7 | 8 | 9 |

## Calculating S

Next, consider a cycle which uses crossings 1,4 , and 8 . The following edges are necessary:


It can be seen that the green edges form a closed loop that does not pass through all vertices. Thus there cannot be a Hamiltonian cycle using crossings 1,4 , and 8 .

## Calculating S

All of the following subsets form loops that don't contain all vertices, thus cannot be used in a Hamiltonian cycle:
$148,149,346,347,1256,1489,2358,3467,56789$
Removing these, the valid subsets are reduced to:


## Calculating S

Most of the remaining subsets only have 3 crossings. The only nontrivial knot which can be drawn with 3 crossings is the trefoil knot.

Whenever the trefoil knot is drawn with only 3 crossings, it must be alternating. This means that as you travel around the knot, you never have 2 overcrossings or 2 undercrossings in a row.

In other words, any knot with has only 3 crossings and is not alternating must be the unknot.

## Calculating $S$

For example, if a 3-crossing cycle contains crossings 2 and 4 , it will have 2 overcrossings in a row, so will be the unknot.


| 1 | 3 | 2 | 3 | 3 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5 | 2 | 4 | 4 | 5 |
| 1 | 6 | 2 | 8 | 5 | 6 |
| 1 | 7 | 2 | 9 | 6 | 7 |
| 1 | 8 | 3 | 4 | 7 | 9 |
| 1 | 9 | 3 | 8 | 8 | 9 |

All of the above pairs result in a non-alternating knot, thus if they appear in a 3-crossing cycle, the resulting knot is trivial and can be removed.

## Calculating S

Using this information, we can remove most of the remaining subsets:


At this point there are only 5 sets of crossings left, so they can easily be examined individually.

## Calculating S

Filling in the necessary edges for each crossing set:


Introduction
Proof of Theorem 1
Proof of Theorem 2 Generalization of Theorem 2

## Calculating $S$

Each has 6 or 7 edges already filled, so there is only 1 way to complete each to a Hamiltonian cycle:


## Calculating S

Removing unnecessary edges and widening the edges:


## Calculating $S$

Four of the cycles can easily be unknotted:


Introduction
Proof of Theorem 1

## Calculating S

The final cycle is a trefoil knot:


Thus out of all possible Hamiltonian cycles, one is a trefoil knot and the rest are the unknot. Since the unknot has an arf invariant of 0 and the trefoil knot has an arf invariant of 1 , this means that the sum of arf invariants $S=1$, as we claimed.

This completes the proof of Theorem 2.

## Partial Theorem 2 for $K_{n}$

Slightly upgrading the counting argument given in theorem 2, it can be shown that

## Theorem

The sum of the Arf invariants over all Hamiltonian Cycles of $K_{n}$ is the same for all Spatial Embeddings of $K_{n}$ for all $n \geq 7$.

The case of $n=7$ was shown in the proof of theorem 2.

