A Twisted Thistlethwaite Theorem

Joseph Paugh, Justin Wu, Gavin Zhang

Young Mathematicians Conference

August 24, 2021

 $1/20$

 Ω

イロト 不優 トメ 差 トメ 差 トー 差

The Classic Thistlethwaite Theorem

• Thistlethwaite's Theorem: Up to sign and multiplication by a power of t, the Jones polynomial $J_l(t)$ of an alternating link L is equal to the Tutte polynomial $T_{\Gamma}(-t, -t^{-1}).$

• In this presentation, Thistethwaite's theorem is extended to an abstract link diagram embedded in a potentially non-orientable surface, represented by a Twisted Link Diagram.

Introducing the Twisted Link

- Intuitively, twisted links are abstract links in oriented thickenings of potentially non-orientable surfaces.
- Twisted links may be represented by a *twisted link diagram*, consisting of an ordinary link diagram with circled crossings and bars.

States of The Arrow Polynomial For Twisted Links

For twisted link diagrams, we obtain a state using the following oriented state expansion:

4 / 20

Reducing States

- After smoothing, the result is a collection of loops, potentially decorated with arrows and bars. We reduce these loops as follows:
- Two adjacent arrows pointing in the same direction "cancel."

We also use the "T2 Twisted Reidemeister move:"

• Finally, we introduce an arrow reduction rule involving bars:

$$
\begin{array}{|c|c|c|c|c|}\n\hline\n\text{Hence}\n\hline\n\text{Hence}\n\hline\n\text{Hence}\n\hline\n\text{Hence}\n\end{array}
$$

Reducing States

• If a loop C has an even number of bars, then $\langle C \rangle = K_n$, where 2n is the number of arrows in C after being reduced.

 $6/20$

 Ω

イロト イ団 トメ ヨト メヨト 一番

• $K_0 = 1$ by convention.

- If a loop C has an odd number of bars, we set $\langle C \rangle = M$.
- Then $\langle S \rangle = \prod_{C \in S} \langle C \rangle$ for any state S.

Definition

The arrow bracket polynomial $\langle D \rangle_A$ of an oriented twisted link D is the polynomial in $\mathbb{Z}[A, B, d, M, K_1, K_2, \dots]$ defined by

$$
\langle D\rangle_A(A,B,d)=\sum_{S}A^{\alpha}B^{\beta}d^{|S|-1}\langle S\rangle,
$$

where:

- \bullet α is the number of A splittings in S;
- \bullet β is the number of B splittings in S;
- \bullet $|S|$ is the number of loops in S.
- The quantity $(-A^3)^{-w(D)}\langle D\rangle_{\cal A}(A,A^{-1},-A^2-A^{-2})$ is an invariant of twisted links called the normalized arrow polynomial of D.

• Only two moves are involved in reducing bars in a loop:

• We have the same rules if we replace bars with arrows pointing along the orientation of D:

1 Two adjacent arrows (pointing in the same direction):

2 Oppositely oriented arrows on either side of an arrow:

- Suppose we replace every bar with arrow nodes pointing along the orientation of D.
- For every loop C , we set $\langle C \rangle$ $=$ $K_{\frac{n}{2}}$ if C has n arrows after reduction. • Once again, $K_0 = 1$ by convention.
- Set $\langle S \rangle = \prod_{C \in S} \langle C \rangle$.
- Jet \langle J \rangle $=$ 11 c es \langle U \rangle .
Then $\sum_{\mathcal{S}}A^{\alpha}B^{\beta}d^{\vert\mathcal{S}\vert-1}\langle\mathcal{S}\rangle$ still gives the arrow bracket polynomial, but with M replaced by $\mathsf{K}_{1/2}.$

- This analogy between bars and arrows is key to our construction.
- Before using this observation, we first need to review ribbon graphs.

Ribbon Graphs

• Informally, a *ribbon graph* is a kind of topological graph, with vertices as discs and edges as ribbons:

• We will consider *arrow ribbon graphs*, whose vertices and edges may feature arrows along their topological boundary.

The Arrow Dichromatic Polynomial

Definition

For an arrow ribbon graph G, the arrow dichromatic polynomial A_G is given by

$$
A_G(a, b, c, K) = \sum_{F \subseteq E(G)} a^{k(F)} \left(\prod_{e \in F} b_e \right) c^{bc(F)} \prod_{f \in \partial(F)} K_{i(f)}
$$

where:

- \bullet { b_e } = "edge weights";
- $k(F) = #$ of connected components of F;
- $bc(F) = #$ of connected components of $\partial(F)$;
- $i(f)$ = half the reduced $\#$ of arrows on f.

Note that this sum is taken over spanning subgraphs F of G .

The Arrow Thistlethwaite Theorem

For a state s of the diagram L, we form a signed ribbon graph G^s_l :

- Splittings \rightarrow edges; State circles \rightarrow vertices.
- A splitting \rightarrow positive edge; B splitting \rightarrow negative edge.
- \bullet Oriented smoothing \rightarrow arrow pair along free edge arcs; Disoriented smoothing \rightarrow arrow pair along attaching arcs.
- \bullet Bars \rightarrow arrows along free edges of vertex d[isc](#page-12-0)s[.](#page-14-0)

The Twisted Thistlethwaite Theorem

Theorem

The arrow bracket polynomial of a twisted link diagram L is a specialization of the arrow dichromatic polynomial of G_{L}^{s} :

$$
\langle L\rangle_{A}(A,B,d)=\frac{A^{e_{+}}B^{e_{-}}}{d}A_{G_{L}^{s}}(1,\boldsymbol{b},d,\boldsymbol{K})
$$

where:

\n- $$
e_+ = \# \text{ of positive edges in } G_L^s;
$$
\n- $e_- = \# \text{ of negative edges in } G_L^s;$
\n- $b_e = \begin{cases} B/A & \text{if } e \text{ is positive} \\ A/B & \text{if } e \text{ is negative} \end{cases}$
\n

Proof Idea

- There is a one-to-one correspondence between spanning subgraphs F of G_L^s and states s' of L:
	- $s' \leftrightarrow$ spanning subgraph F that contains only the edges corresponding to the crossings of L where s' differs from s .
- Claim: the boundary components of F are the state circles of s' , and hence carry the same arrow structure.
- To see why this is true, consider the following example.

Proof Idea

• Suppose we have two state circles connected by a ribbon. corresponding to an oriented smoothing.

- If we remove the edge (left), the boundary follows the splitting of our initial state, and features no arrows.
- If we keep the edge (right), the boundary follows the opposite disoriented splitting of our initial state, complete with arrows.

Proof Idea

- Thus the monominals contributed by s' and F to their respective polynomials have the same K_i terms.
- The other factors also work out:
	- The exponent of d is $bc(F) 1 = |s'| 1$.
	- The exponent of A is $e_+ - e_+(F) + e_-(F) = e_+[E(G_L^s)\F] + e_-(F) = \alpha(s').$
	- The exponent of B is $e_{-} - e_{-}(F) + e_{+}(F) = e_{-}[E(G_L^s) \backslash F] + e_{+}(F) = \beta(s').$

18 / 20

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ 「重 」 約 9,0

- Depending on the initial choice of state, we can obtain different types of Thistlethwaite theorems for various polynomials.
- For example, choosing the Seifert state of the link diagram can be used to produce an analogous theorem for the arrow version of Riordan-Bollobas polynomial.

Bibliography

- **Bourgoin, Mario O. "Twisted link theory." Algebraic & Geometric** Topology 8 (2008): 1249-1279.
- Bradford, R., Butler, C., & Chmutov, S. (2012). "Arrow ribbon graphs." Journal of Knot Theory and its Ramifications, 21(13), [1240002]. https://doi.org/10.1142/S0218216512400020
- Ceniceros, Jessica, "Twisted Virtual Biracks" (2011). CMC Senior Theses. Paper 176.
- Deng, Qingying. "One conjecture on cut points of virtual links and the arrow polynomial of twisted links." (2021).