Thompson's Group

Project 2

June 28, 2021

Outline

(1) F

- Definition
- Group Presentation
- Rooted Binary Trees
(2) Binary Trees
- Examples
- Every Pair of Binary Trees is an Element of F
(3) Links From Elements of F
- The topic of this presentation is the so-called "Thompson's Group."
- The topic of this presentation is the so-called "Thompson's Group."
- There are in fact three different groups this may refer to: in the literature, the group we focus on today is referred to as " F ", so we shall use "F" to refer to this group.

What is F?

Definition

The Thompson Group F is the set of piecewise linear homeomorphisms from $[0,1]$ to itself, which are differentiable at every point except at a finite set of dyadic rationals, and such that the derivative is a power of 2 wherever it exists.

What is F?

Definition

The Thompson Group F is the set of piecewise linear homeomorphisms from $[0,1]$ to itself, which are differentiable at every point except at a finite set of dyadic rationals, and such that the derivative is a power of 2 wherever it exists.

- This is a lot of jargon. What does this mean?

What is F?

Definition

The Thompson Group F is the set of piecewise linear homeomorphisms from $[0,1]$ to itself, which are differentiable at every point except at a finite set of dyadic rationals, and such that the derivative is a power of 2 wherever it exists.

- This is a lot of jargon. What does this mean?
- By "piecewise linear homomorphism," we mean continuous functions f from $[0,1]$ to itself, which are monotonic, such that $f(0)=0$ and $f(1)=1$, and at all except a finite set of points, f is linear.

What is F?

Definition

The Thompson Group F is the set of piecewise linear homeomorphisms from $[0,1]$ to itself, which are differentiable at every point except at a finite set of dyadic rationals, and such that the derivative is a power of 2 wherever it exists.

- This is a lot of jargon. What does this mean?
- By "piecewise linear homomorphism," we mean continuous functions f from $[0,1]$ to itself, which are monotonic, such that $f(0)=0$ and $f(1)=1$, and at all except a finite set of points, f is linear.
- A "dyadic rational" is simply a rational number $\frac{a}{b}$ (assumed to be fully reduced) such that b is a power of 2 . Examples include $\frac{3}{4}, \frac{17}{256}$, and $\frac{1}{2}$.

Examples

The element $A(x)=$

$$
\begin{cases}\frac{x}{2} & 0 \leq x \leq \frac{1}{2} \\ x-\frac{1}{4} & \frac{1}{2} \leq x \leq \frac{3}{4} \\ 2 x-1 & \frac{3}{4} \leq x \leq 1\end{cases}
$$

The element $B(x)=$

$$
\begin{cases}x & 0 \leq x \leq \frac{1}{2} \\ \frac{x}{2}+\frac{1}{4} & \frac{1}{2} \leq x \leq \frac{3}{4} \\ x-\frac{1}{8} & \frac{3}{4} \leq x \leq \frac{7}{8} \\ 2 x-1 & \frac{7}{8} \leq x \leq 1\end{cases}
$$

An important fact

- An important fact is that the two previous examples, $A(x)$ and $B(x)$, generate F.

Theorem

$F \cong\left\langle A, B \mid\left[A B^{-1}, A^{-1} B A\right]=\left[A B^{-1}, A^{-2} B A^{2}\right]=1\right\rangle$

An Observation

- To study the Thompson Group, we first want an easy way to refer to its elements. We could just write it down as a piecewise function, but this can be time consuming, as well as unenlightening.

An Observation

- To study the Thompson Group, we first want an easy way to refer to its elements. We could just write it down as a piecewise function, but this can be time consuming, as well as unenlightening.
- Let's return to the example of $A(x)$:

An Observation

- To study the Thompson Group, we first want an easy way to refer to its elements. We could just write it down as a piecewise function, but this can be time consuming, as well as unenlightening.
- Let's return to the example of $A(x)$:

- We note that we can partition the unit interval into intervals on which $A(x)$ is linear: $\left[0, \frac{1}{2}\right],\left[\frac{1}{2}, \frac{3}{4}\right]$, and $\left[\frac{3}{4}, 1\right]$.

An Observation (continued)

- We can also do the same for $A^{-1}:\left[0, \frac{1}{4}\right],\left[\frac{1}{4}, \frac{1}{2}\right]$, and $\left[\frac{1}{2}, 1\right]$.

An Observation (continued)

- We can also do the same for $A^{-1}:\left[0, \frac{1}{4}\right],\left[\frac{1}{4}, \frac{1}{2}\right]$, and $\left[\frac{1}{2}, 1\right]$.
- We can observe that $A\left(\left[0, \frac{1}{2}\right]\right)=\left[0, \frac{1}{4}\right], A\left(\left[\frac{1}{2}, \frac{3}{4}\right]\right)=\left[\frac{1}{4}, \frac{1}{2}\right]$, and $A\left(\left[\frac{3}{4}, 1\right]\right)=\left[\frac{1}{2}, 1\right]$.

An Observation (continued)

- We can also do the same for $A^{-1}:\left[0, \frac{1}{4}\right],\left[\frac{1}{4}, \frac{1}{2}\right]$, and $\left[\frac{1}{2}, 1\right]$.
- We can observe that $A\left(\left[0, \frac{1}{2}\right]\right)=\left[0, \frac{1}{4}\right], A\left(\left[\frac{1}{2}, \frac{3}{4}\right]\right)=\left[\frac{1}{4}, \frac{1}{2}\right]$, and $A\left(\left[\frac{3}{4}, 1\right]\right)=\left[\frac{1}{2}, 1\right]$.
- Essentially, all A does is scale dyadic intervals (meaning intervals whose endpoints are both dyadic rationals) to other dyadic intervals.

An Observation (continued)

- We can also do the same for $A^{-1}:\left[0, \frac{1}{4}\right],\left[\frac{1}{4}, \frac{1}{2}\right]$, and $\left[\frac{1}{2}, 1\right]$.
- We can observe that $A\left(\left[0, \frac{1}{2}\right]\right)=\left[0, \frac{1}{4}\right], A\left(\left[\frac{1}{2}, \frac{3}{4}\right]\right)=\left[\frac{1}{4}, \frac{1}{2}\right]$, and $A\left(\left[\frac{3}{4}, 1\right]\right)=\left[\frac{1}{2}, 1\right]$.
- Essentially, all A does is scale dyadic intervals (meaning intervals whose endpoints are both dyadic rationals) to other dyadic intervals.
- This is indeed true of every element of F, so we can represent each element as two sets of intervals: one for the domain and one for the range.

Binary Trees

- We will now discuss a way to represent every element of F as a pair of rooted binary trees

Binary Trees

- We will now discuss a way to represent every element of F as a pair of rooted binary trees

Definition

A rooted binary tree is a tree with one root, v_{0}, with valence 2 , such that every non-root node has valence either 1 (in which case it is a leaf) or 3 .

- Here are some examples

Examples

The simplest rooted binary tree, called a "caret"

A rooted binary tree with 3 leaves

Partitioning $[0,1]$ using rooted binary trees

- We can use a binary tree to represent a particular way to partition $[0,1]$ into dyadic intervals.

Partitioning $[0,1]$ using rooted binary trees

- We can use a binary tree to represent a particular way to partition [0,1] into dyadic intervals.
- Each caret can be interpreted as follows: the root of the caret is a particular dyadic interval $[a, b]$, with the leaves of the caret being $\left[a, \frac{a+b}{2}\right]$ and $\left[\frac{a+b}{2}, b\right]$. A tree consisting of one caret would be the partition of the unit interval into $\left[0, \frac{1}{2}\right]$ and $\left[\frac{1}{2}, 1\right]$.

Examples

This is a partition of $[0,1]$ into $\left[0, \frac{1}{2}\right] \cup\left[\frac{1}{2}, 1\right]$

This is a partition of $[0,1]$ into

$$
\left[0, \frac{1}{2}\right] \cup\left[\frac{1}{2}, \frac{3}{4}\right] \cup\left[\frac{3}{4}, \frac{7}{8}\right] \cup\left[\frac{7}{8}, 1\right]
$$

Back to $A(x)$

- Now that we know what a rooted binary tree is, let's use them to represent $A(x)$.

Back to $A(x)$

- Now that we know what a rooted binary tree is, let's use them to represent $A(x)$.
- Let's take another look at $A(x)$, the element of F discussed previously:

Back to A(x)

- Now that we know what a rooted binary tree is, let's use them to represent $A(x)$.
- Let's take another look at $A(x)$, the element of F discussed previously:

$$
A(x)
$$

- Looking at the dotted lines, we can see the domain is partitioned into $\left[0, \frac{1}{2}\right] \cup\left[\frac{1}{2}, \frac{3}{4}\right] \cup\left[\frac{3}{4}, 1\right]$, and the range is partitioned into $\left[0, \frac{1}{4}\right] \cup\left[\frac{1}{4}, \frac{1}{2}\right] \cup\left[\frac{1}{2}, 1\right]$.

Representations

- Here is a representation of $A(x)$ as a pair of rooted binary trees:

Representations

- Here is a representation of $A(x)$ as a pair of rooted binary trees:

- And here's $B(x)$

Representations

- Here is a representation of $A(x)$ as a pair of rooted binary trees:

- And here's $B(x)$

- In these pairs, Vaughan Jones calls the first the "denominator" and the second the "numerator," so I will use this terminology.

Representations

- Here is a representation of $A(x)$ as a pair of rooted binary trees:

- And here's $B(x)$

- In these pairs, Vaughan Jones calls the first the "denominator" and the second the "numerator," so I will use this terminology.
- The reason for this is because we can think of elements of F acting on the set of rooted binary trees: if f sends the tree X to the tree Y, then in some sense $f \cdot X=Y$, so, by abusing notation, we can convince ourselves that $f=\frac{Y}{X}$ in some sense.

Reduced Trees

- Any element of F has multiple representations as a pair of rooted binary trees.

Reduced Trees

- Any element of F has multiple representations as a pair of rooted binary trees.
- If you add a caret in the same place on both trees, the corresponding element of F does not change.

Reduced Trees

- Any element of F has multiple representations as a pair of rooted binary trees.
- If you add a caret in the same place on both trees, the corresponding element of F does not change.
- Here's another representation of $A(x)$:

Reduced Trees

- Any element of F has multiple representations as a pair of rooted binary trees.
- If you add a caret in the same place on both trees, the corresponding element of F does not change.
- Here's another representation of $A(x)$:

- And here' another for $B(x)$:

Representations, continued

- For any element of F the two binary trees will have the same number of leaves

Representations, continued

- For any element of F the two binary trees will have the same number of leaves
- It may not be immediately obvious that any such pair of trees represents an element of F.

Theorem

Every pair of rooted binary trees with the same number of leaves represents a valid element of F

Proof of Theorem

- If A is a rooted binary tree, we will refer to the set of leaves of A as L_{A}.

Proof of Theorem

- If A is a rooted binary tree, we will refer to the set of leaves of A as L_{A}.
- If A and B are two rooted binary trees such that $\left|L_{A}\right|=\left|L_{B}\right|$, we wish to show that the pair $A \longrightarrow B$ is an element of Thompson's group.

Proof of Theorem

- If A is a rooted binary tree, we will refer to the set of leaves of A as L_{A}.
- If A and B are two rooted binary trees such that $\left|L_{A}\right|=\left|L_{B}\right|$, we wish to show that the pair $A \longrightarrow B$ is an element of Thompson's group.
- $L_{A}=\left\{\left[0, a_{1}\right],\left[a_{1}, a_{2}\right], \ldots,\left[a_{n-1}, a_{n}\right]\right\}$ and $L_{B}=\left\{\left[0, b_{1}\right],\left[b_{1}, b_{2}\right], \ldots,\left[b_{n-1}, b_{n}\right]\right\}$, where when $i<j$ we have $a_{i}<a_{j}$ and $b_{i}<b_{j}$, and the a_{i} and b_{i} are all positive.

Proof of Theorem

- If A is a rooted binary tree, we will refer to the set of leaves of A as L_{A}.
- If A and B are two rooted binary trees such that $\left|L_{A}\right|=\left|L_{B}\right|$, we wish to show that the pair $A \longrightarrow B$ is an element of Thompson's group.
- $L_{A}=\left\{\left[0, a_{1}\right],\left[a_{1}, a_{2}\right], \ldots,\left[a_{n-1}, a_{n}\right]\right\}$ and $L_{B}=\left\{\left[0, b_{1}\right],\left[b_{1}, b_{2}\right], \ldots,\left[b_{n-1}, b_{n}\right]\right\}$, where when $i<j$ we have $a_{i}<a_{j}$ and $b_{i}<b_{j}$, and the a_{i} and b_{i} are all positive.
- If $F \ni f=A \longrightarrow B$, then $f\left(\left[a_{i}, a_{i+1}\right]\right)=\left[b_{i}, b_{i+1}\right]$ for $1 \leq i \leq n-1$, $f(0)=0$ and $f(1)=1$.

Proof of Theorem

- If A is a rooted binary tree, we will refer to the set of leaves of A as L_{A}.
- If A and B are two rooted binary trees such that $\left|L_{A}\right|=\left|L_{B}\right|$, we wish to show that the pair $A \longrightarrow B$ is an element of Thompson's group.
- $L_{A}=\left\{\left[0, a_{1}\right],\left[a_{1}, a_{2}\right], \ldots,\left[a_{n-1}, a_{n}\right]\right\}$ and $L_{B}=\left\{\left[0, b_{1}\right],\left[b_{1}, b_{2}\right], \ldots,\left[b_{n-1}, b_{n}\right]\right\}$, where when $i<j$ we have $a_{i}<a_{j}$ and $b_{i}<b_{j}$, and the a_{i} and b_{i} are all positive.
- If $F \ni f=A \longrightarrow B$, then $f\left(\left[a_{i}, a_{i+1}\right]\right)=\left[b_{i}, b_{i+1}\right]$ for $1 \leq i \leq n-1$, $f(0)=0$ and $f(1)=1$.
- It is simple to construct such an f (or at least, to construct the graph) as follows: let the point $L_{j}=\left(a_{j}, b_{j}\right)$ for $1 \leq j \leq n-1$, $L_{0}=(0,0)$, and $L_{n}=(1,1)$. If we draw a line from L_{j} to L_{j+1} for all $1 \leq j \leq n-1$, this graph will define an element of Thompson's group.

Proof of Theorem

- If A is a rooted binary tree, we will refer to the set of leaves of A as L_{A}.
- If A and B are two rooted binary trees such that $\left|L_{A}\right|=\left|L_{B}\right|$, we wish to show that the pair $A \longrightarrow B$ is an element of Thompson's group.
- $L_{A}=\left\{\left[0, a_{1}\right],\left[a_{1}, a_{2}\right], \ldots,\left[a_{n-1}, a_{n}\right]\right\}$ and $L_{B}=\left\{\left[0, b_{1}\right],\left[b_{1}, b_{2}\right], \ldots,\left[b_{n-1}, b_{n}\right]\right\}$, where when $i<j$ we have $a_{i}<a_{j}$ and $b_{i}<b_{j}$, and the a_{i} and b_{i} are all positive.
- If $F \ni f=A \longrightarrow B$, then $f\left(\left[a_{i}, a_{i+1}\right]\right)=\left[b_{i}, b_{i+1}\right]$ for $1 \leq i \leq n-1$, $f(0)=0$ and $f(1)=1$.
- It is simple to construct such an f (or at least, to construct the graph) as follows: let the point $L_{j}=\left(a_{j}, b_{j}\right)$ for $1 \leq j \leq n-1$, $L_{0}=(0,0)$, and $L_{n}=(1,1)$. If we draw a line from L_{j} to L_{j+1} for all $1 \leq j \leq n-1$, this graph will define an element of Thompson's group.
- The points of nondifferentiability occur at dyadic rationals: recall that the a_{i}, b_{i} are dyadic by construction.

Proof of Theorem (Continued)

- To complete the construction, we must simply prove that the lines all have a power of 2 as a slope.

Proof of Theorem (Continued)

- To complete the construction, we must simply prove that the lines all have a power of 2 as a slope.
- This is because $b_{i}-b_{i-1}$ is a power of 2 for all i, and this is also true for all $a_{i}-a_{i-1}$. That is, every interval has a power of two as its length. So, the ratio, which is the slope of L_{i-1} is a ratio of powers of two, and hence a power of two.

Proof of Theorem (Continued)

- To complete the construction, we must simply prove that the lines all have a power of 2 as a slope.
- This is because $b_{i}-b_{i-1}$ is a power of 2 for all i, and this is also true for all $a_{i}-a_{i-1}$. That is, every interval has a power of two as its length. So, the ratio, which is the slope of L_{i-1} is a ratio of powers of two, and hence a power of two.
- Let's work through a simple example

Example

Example

- The first tree is a partition of the unit interval into $\left[0, \frac{1}{4}\right] \cup\left[\frac{1}{4}, \frac{3}{8}\right] \cup\left[\frac{3}{8}, \frac{1}{2}\right] \cup\left[\frac{1}{2}, \frac{3}{4}\right] \cup\left[\frac{3}{4}, 1\right]$, and the second is a partition of the unit interval into $\left[0, \frac{1}{2}\right] \cup\left[\frac{1}{2}, \frac{5}{8}\right] \cup\left[\frac{5}{8}, \frac{11}{16}\right] \cup\left[\frac{11}{16}, \frac{3}{4}\right] \cup\left[\frac{3}{4}, 1\right]$

Example

- The first tree is a partition of the unit interval into $\left[0, \frac{1}{4}\right] \cup\left[\frac{1}{4}, \frac{3}{8}\right] \cup\left[\frac{3}{8}, \frac{1}{2}\right] \cup\left[\frac{1}{2}, \frac{3}{4}\right] \cup\left[\frac{3}{4}, 1\right]$, and the second is a partition of the unit interval into $\left[0, \frac{1}{2}\right] \cup\left[\frac{1}{2}, \frac{5}{8}\right] \cup\left[\frac{5}{8}, \frac{11}{16}\right] \cup\left[\frac{11}{16}, \frac{3}{4}\right] \cup\left[\frac{3}{4}, 1\right]$
- So the points of nondifferentiability are $\left(\frac{1}{4}, \frac{1}{2}\right),\left(\frac{3}{8}, \frac{5}{8}\right),\left(\frac{1}{2}, \frac{11}{16}\right),\left(\frac{3}{4}, \frac{3}{4}\right)$.

Example

From left to right, the function has slope $2,1, \frac{1}{2}, \frac{1}{4}, 1$

Frame Title

- There is a way to associate any element of F with a link. We will now discuss this.

Frame Title

- There is a way to associate any element of F with a link. We will now discuss this.
- The best way to describe this algorithm is to just show how it's done, so let's start by doing it to $A(x)$

We Draw $A(x)$ In a New Way

Here we have drawn $A(x)$ like this to make the next step easier to visualize

Flip the Denominator

We reflect the denominator about the x-axis. Reminder: the denominator is the first tree

Put Them Together

Next we connect the two trees like so. The red dots are the leaves.

Connecting Lines

We draw lines like so.
Dotted lines are always undercrossings

This process results in a link diagram of the unknot. We say it has Thompson index 3

Let's do $B(x)$

The Result

Note that this is just the diagram from A with an extra unknot which is not linked in any way

One More

Note this element of F has 5 leaves

The Result

The Trefoil!

The Obvious Question

- This begs an obvious question:

The Obvious Question

- This begs an obvious question:

Obvious Question

Is every link the result of this process for some element of F ?

- Yes!

The Obvious Question

- This begs an obvious question:

Obvious Question

Is every link the result of this process for some element of F ?

- Yes!
- Vaugh Jones came up with an algorithm to generate an element of F for any link. However, it is inefficient.

The 5_{1} knot

This is the so-called "cinquefoil knot." Any guesses as to how many leaves the algorithm produces?

Lotta leaves

21 leaves

Conclusion

- This leaves us with the following link invariant:

Definition

The Thompson index of a link is minimal number of leaves required for an element of F to be associated to that link.

Conclusion

- This leaves us with the following link invariant:

Definition

The Thompson index of a link is minimal number of leaves required for an element of F to be associated to that link.

- One possible direction for future research is to find some kind of bound for the Thompson index in terms of the crossing number

