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F

The topic of this presentation is the so-called “Thompson’s Group.”

There are in fact three different groups this may refer to: in the
literature, the group we focus on today is referred to as “F”, so we
shall use “F” to refer to this group.
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What is F?

Definition

The Thompson Group F is the set of piecewise linear homeomorphisms
from [0, 1] to itself, which are differentiable at every point except at a
finite set of dyadic rationals, and such that the derivative is a power of 2
wherever it exists.

This is a lot of jargon. What does this mean?

By “piecewise linear homomorphism,” we mean continuous functions
f from [0, 1] to itself, which are monotonic, such that f (0) = 0 and
f (1) = 1, and at all except a finite set of points, f is linear.

A “dyadic rational” is simply a rational number a
b (assumed to be fully

reduced) such that b is a power of 2. Examples include 3
4 , 17

256 , and 1
2 .
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Examples

The element A(x) =
x
2 0 ≤ x ≤ 1

2

x − 1
4

1
2 ≤ x ≤ 3

4

2x − 1 3
4 ≤ x ≤ 1

The element B(x) =
x 0 ≤ x ≤ 1

2
x
2 + 1

4
1
2 ≤ x ≤ 3

4

x − 1
8

3
4 ≤ x ≤ 7

8

2x − 1 7
8 ≤ x ≤ 1
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An important fact

An important fact is that the two previous examples, A(x) and B(x),
generate F .

Theorem

F ∼= 〈A,B | [AB−1,A−1BA] = [AB−1,A−2BA2] = 1〉
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An Observation

To study the Thompson Group, we first want an easy way to refer to
its elements. We could just write it down as a piecewise function, but
this can be time consuming, as well as unenlightening.

Let’s return to the example of A(x) :

We note that we can partition the unit interval into intervals on
which A(x) is linear: [0, 12 ], [12 ,

3
4 ], and [34 , 1].
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An Observation (continued)

We can also do the same for A−1: [0, 14 ], [14 ,
1
2 ], and [12 , 1].

We can observe that A([0, 12 ]) = [0, 14 ], A([12 ,
3
4 ]) = [14 ,

1
2 ], and

A([34 , 1]) = [12 , 1].

Essentially, all A does is scale dyadic intervals (meaning intervals
whose endpoints are both dyadic rationals) to other dyadic intervals.

This is indeed true of every element of F , so we can represent each
element as two sets of intervals: one for the domain and one for the
range.
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Binary Trees

We will now discuss a way to represent every element of F as a pair
of rooted binary trees

Definition

A rooted binary tree is a tree with one root, v0, with valence 2, such that
every non-root node has valence either 1 (in which case it is a leaf) or 3.

Here are some examples
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Examples

The simplest rooted binary
tree, called a “caret”

A rooted binary tree with
3 leaves
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Partitioning [0, 1] using rooted binary trees

We can use a binary tree to represent a particular way to partition
[0, 1] into dyadic intervals.

Each caret can be interpreted as follows: the root of the caret is a
particular dyadic interval [a, b], with the leaves of the caret being
[a, a+b

2 ] and [a+b
2 , b]. A tree consisting of one caret would be the

partition of the unit interval into [0, 12 ] and [12 , 1].
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Examples

This is a partition of [0, 1]
into [0, 1

2 ] ∪ [ 12 , 1]
This is a partition of [0, 1]
into
[0, 1

2 ]∪ [ 12 ,
3
4 ]∪ [ 34 ,

7
8 ]∪ [ 78 , 1]
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Back to A(x)

Now that we know what a rooted binary tree is, let’s use them to
represent A(x).

Let’s take another look at A(x), the element of F discussed
previously:

A(x)

Looking at the dotted lines, we can see the domain is partitioned into
[0, 12 ] ∪ [12 ,

3
4 ] ∪ [34 , 1], and the range is partitioned into

[0, 14 ] ∪ [14 ,
1
2 ] ∪ [12 , 1].
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Representations

Here is a representation of A(x) as a pair of rooted binary trees:

−→

And here’s B(x)

−→

In these pairs, Vaughan Jones calls the first the “denominator” and
the second the “numerator,” so I will use this terminology.

The reason for this is because we can think of elements of F acting
on the set of rooted binary trees: if f sends the tree X to the tree Y ,
then in some sense f · X = Y , so, by abusing notation, we can
convince ourselves that f = Y

X in some sense.
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Reduced Trees

Any element of F has multiple representations as a pair of rooted
binary trees.

If you add a caret in the same place on both trees, the corresponding
element of F does not change.

Here’s another representation of A(x) :

−→

And here’ another for B(x) :

−→
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Representations, continued

For any element of F the two binary trees will have the same number
of leaves

It may not be immediately obvious that any such pair of trees
represents an element of F .

Theorem

Every pair of rooted binary trees with the same number of leaves
represents a valid element of F
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Proof of Theorem

If A is a rooted binary tree, we will refer to the set of leaves of A as
LA.

If A and B are two rooted binary trees such that |LA| = |LB |, we wish
to show that the pair A −→ B is an element of Thompson’s group.

LA = {[0, a1], [a1, a2], . . . , [an−1, an]} and
LB = {[0, b1], [b1, b2], . . . , [bn−1, bn]}, where when i < j we have
ai < aj and bi < bj , and the ai and bi are all positive.

If F 3 f = A −→ B, then f ([ai , ai+1]) = [bi , bi+1] for 1 ≤ i ≤ n − 1,
f (0) = 0 and f (1) = 1.

It is simple to construct such an f (or at least, to construct the
graph) as follows: let the point Lj = (aj , bj) for 1 ≤ j ≤ n − 1,
L0 = (0, 0), and Ln = (1, 1). If we draw a line from Lj to Lj+1 for all
1 ≤ j ≤ n− 1, this graph will define an element of Thompson’s group.

The points of nondifferentiability occur at dyadic rationals: recall that
the ai , bi are dyadic by construction.
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Proof of Theorem (Continued)

To complete the construction, we must simply prove that the lines all
have a power of 2 as a slope.

This is because bi − bi−1 is a power of 2 for all i , and this is also true
for all ai − ai−1. That is, every interval has a power of two as its
length. So, the ratio, which is the slope of Li−1 is a ratio of powers of
two, and hence a power of two.

Let’s work through a simple example
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Example

−→

The first tree is a partition of the unit interval into
[0, 14 ] ∪ [14 ,

3
8 ] ∪ [38 ,

1
2 ] ∪ [12 ,

3
4 ] ∪ [34 , 1], and the second is a partition of

the unit interval into [0, 12 ] ∪ [12 ,
5
8 ] ∪ [58 ,

11
16 ] ∪ [1116 ,

3
4 ] ∪ [34 , 1]

So the points of nondifferentiability are (14 ,
1
2), (38 ,

5
8), (12 ,

11
16), (34 ,

3
4).
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Example

Points of non-differentiability
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From left to right, the function has slope 2, 1, 1
2 , 1

4 , 1
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Frame Title

There is a way to associate any element of F with a link. We will now
discuss this.

The best way to describe this algorithm is to just show how it’s done,
so let’s start by doing it to A(x)
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We Draw A(x) In a New Way

Here we have drawn A(x) like this to make the next step easier to visualize
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Flip the Denominator

We reflect the denominator about the x-axis. Reminder: the denominator is the
first tree
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Put Them Together

Next we connect the two trees like so. The red dots are the leaves.
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Connecting Lines

We draw lines like so.
Dotted lines are always
undercrossings

−→

This process results in a
link diagram of the
unknot. We say it has
Thompson index 3
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Let’s do B(x)
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The Result

Note that this is just the diagram from A with an extra unknot which is not
linked in any way
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One More

Note this element of F has 5 leaves
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The Result

The Trefoil!
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The Obvious Question

This begs an obvious question:

Obvious Question

Is every link the result of this process for some element of F?

Yes!

Vaugh Jones came up with an algorithm to generate an element of F
for any link. However, it is inefficient.
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The 51 knot

This is the so-called “cinquefoil knot.” Any guesses as to how many leaves the
algorithm produces?
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Lotta leaves

21 leaves
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Conclusion

This leaves us with the following link invariant:

Definition

The Thompson index of a link is minimal number of leaves required for
an element of F to be associated to that link.

One possible direction for future research is to find some kind of
bound for the Thompson index in terms of the crossing number
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