

The Conjugacy Problem In A Version of Thompson's Group

John White, in collaboration with Torey Hilbert, Alexander Patterson, Dennis Sweeny, Dr. Sergei Chmutov, and Dr. Matt Harper

August 22, 2021

Groups (Optional)

A “group” is a mathematical object G consisting of a set, S , and a function $f : S^2 \rightarrow S$, such that the following axioms hold, with $f(a, b)$ denoted as $a \cdot b$, or just ab for short.

- Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

Groups (Optional)

A “group” is a mathematical object G consisting of a set, S , and a function $f : S^2 \rightarrow S$, such that the following axioms hold, with $f(a, b)$ denoted as $a \cdot b$, or just ab for short.

- Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Identity: there exists an element called the “identity element,” usually denoted e , such that for all $a \in G$, $e \cdot a = a \cdot e = a$

Groups (Optional)

A “group” is a mathematical object G consisting of a set, S , and a function $f : S^2 \rightarrow S$, such that the following axioms hold, with $f(a, b)$ denoted as $a \cdot b$, or just ab for short.

- Associativity: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Identity: there exists an element called the “identity element,” usually denoted e , such that for all $a \in G$, $e \cdot a = a \cdot e = a$
- Inverse: for any $a \in G$, there is an “inverse,” usually denoted a^{-1} , such that $a \cdot a^{-1} = a^{-1} \cdot a = e$.

The Conjugacy Problem

- A useful notion to study in group theory is that of conjugacy: two elements x, y of a group are called “conjugate” if there is some z such that $zxz^{-1} = y$.

The Conjugacy Problem

- A useful notion to study in group theory is that of conjugacy: two elements x, y of a group are called “conjugate” if there is some z such that $zxz^{-1} = y$.
- In a group, determining whether two elements are conjugate or not (that is, whether there is such a z as above), is called *the conjugacy problem*

The Conjugacy Problem

- A useful notion to study in group theory is that of conjugacy: two elements x, y of a group are called “conjugate” if there is some z such that $zxz^{-1} = y$.
- In a group, determining whether two elements are conjugate or not (that is, whether there is such a z as above), is called *the conjugacy problem*
- In this talk, I will be presenting a complete solution to the conjugacy problem in a certain group.

The Group In Question

Definition

We will denote by F_3 the group of piecewise linear homeomorphisms f of the $[0, 1]$ interval, which fix the endpoints, such that each f is differentiable except perhaps at a finite number of triadic rationals (rational numbers with a 3 in the denominator), and such that the derivative, where it exists, is always 3^k for some $k \in \mathbb{Z}$.

Checking

We quickly check that it is indeed a group:

- If f, g are two elements of F_3 , then whenever $f \circ g$ is differentiable, it will locally be the composition of two linear functions with derivative a power of 3, so it will locally be such a function (alternatively, one could use the chain rule)

Checking

We quickly check that it is indeed a group:

- If f, g are two elements of F_3 , then whenever $f \circ g$ is differentiable, it will locally be the composition of two linear functions with derivative a power of 3, so it will locally be such a function (alternatively, one could use the chain rule)
- The points of non-differentiability of $f \circ g$ are a subset of the points of non-differentiability of f union the points of non-differentiability of g , so $f \circ g$ is only non-differentiable at a finite (possibly zero) set of ternary rationals.

Checking

We quickly check that it is indeed a group:

- If f, g are two elements of F_3 , then whenever $f \circ g$ is differentiable, it will locally be the composition of two linear functions with derivative a power of 3, so it will locally be such a function (alternatively, one could use the chain rule)
- The points of non-differentiability of $f \circ g$ are a subset of the points of non-differentiability of f union the points of non-differentiability of g , so $f \circ g$ is only non-differentiable at a finite (possibly zero) set of ternary rationals.
- Function composition is associative, so we have associativity

Checking

We quickly check that it is indeed a group:

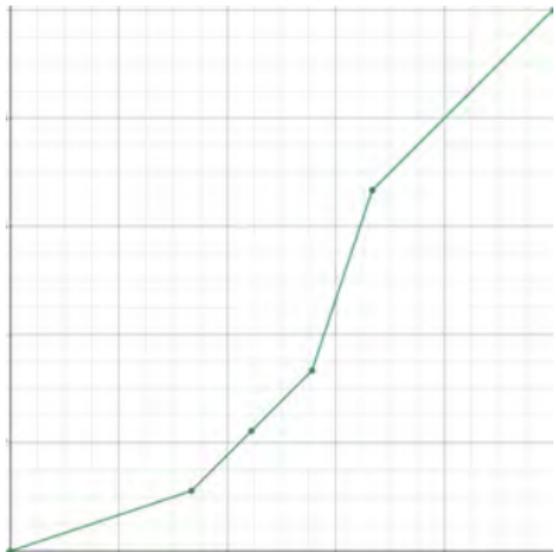
- If f, g are two elements of F_3 , then whenever $f \circ g$ is differentiable, it will locally be the composition of two linear functions with derivative a power of 3, so it will locally be such a function (alternatively, one could use the chain rule)
- The points of non-differentiability of $f \circ g$ are a subset of the points of non-differentiability of f union the points of non-differentiability of g , so $f \circ g$ is only non-differentiable at a finite (possibly zero) set of ternary rationals.
- Function composition is associative, so we have associativity
- The identity function, $f(x) = x$, satisfies this condition, as $1 = 3^0$

Checking

We quickly check that it is indeed a group:

- If f, g are two elements of F_3 , then whenever $f \circ g$ is differentiable, it will locally be the composition of two linear functions with derivative a power of 3, so it will locally be such a function (alternatively, one could use the chain rule)
- The points of non-differentiability of $f \circ g$ are a subset of the points of non-differentiability of f union the points of non-differentiability of g , so $f \circ g$ is only non-differentiable at a finite (possibly zero) set of ternary rationals.
- Function composition is associative, so we have associativity
- The identity function, $f(x) = x$, satisfies this condition, as $1 = 3^0$
- Later we will show how to easily compute inverses, so we know it has inverses

Examples



Tree Diagrams

Each element of F_3 can be thought of in the following way:

- First we chop up the unit interval $[0, 1]$ into finitely many triadic intervals (intervals whose length is a power of 3) in two ways: $\{[a_0, a_1], [a_1, a_2], \dots, [a_{n-1}, a_n]\}$ and $\{[b_0, b_1], [b_1, b_2], \dots, [b_{n-1}, b_n]\}$, where $a_0 = b_0 = 0$ and $a_n = b_n = 1$, and such that each a_i and b_i is a power of 3.

Tree Diagrams

Each element of F_3 can be thought of in the following way:

- First we chop up the unit interval $[0, 1]$ into finitely many triadic intervals (intervals whose length is a power of 3) in two ways: $\{[a_0, a_1], [a_1, a_2], \dots, [a_{n-1}, a_n]\}$ and $\{[b_0, b_1], [b_1, b_2], \dots, [b_{n-1}, b_n]\}$, where $a_0 = b_0 = 0$ and $a_n = b_n = 1$, and such that each a_i and b_i is a power of 3.
- Then, we have a function which linearly maps the i th interval in the first set to the i th interval in the second linearly. It will be differentiable except at the n points $(a_i, b_i)_{1 \leq i \leq n}$.

Tree Diagrams

Each element of F_3 can be thought of in the following way:

- First we chop up the unit interval $[0, 1]$ into finitely many triadic intervals (intervals whose length is a power of 3) in two ways: $\{[a_0, a_1], [a_1, a_2], \dots, [a_{n-1}, a_n]\}$ and $\{[b_0, b_1], [b_1, b_2], \dots, [b_{n-1}, b_n]\}$, where $a_0 = b_0 = 0$ and $a_n = b_n = 1$, and such that each a_i and b_i is a power of 3.
- Then, we have a function which linearly maps the i th interval in the first set to the i th interval in the second linearly. It will be differentiable except at the n points $(a_i, b_i)_{1 \leq i \leq n}$.
- This also lets us easily compute the inverse of a function by considering the function which maps the second set of intervals to the first.

Tree Diagrams

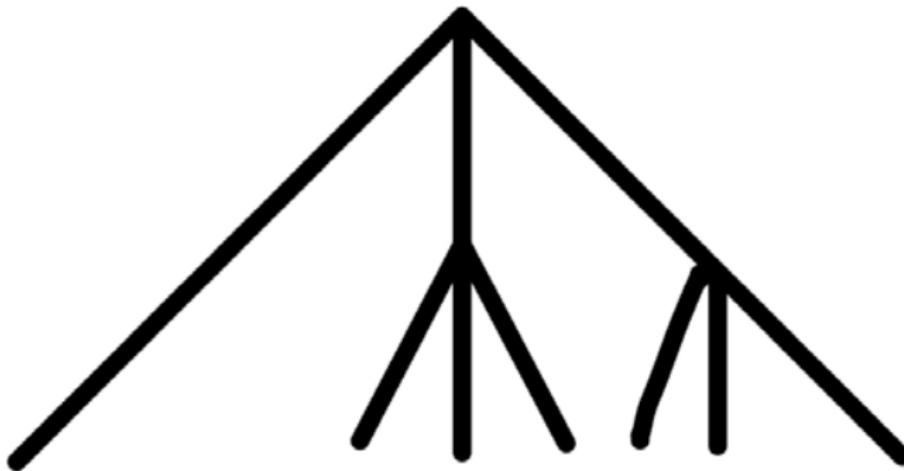
Each element of F_3 can be thought of in the following way:

- First we chop up the unit interval $[0, 1]$ into finitely many triadic intervals (intervals whose length is a power of 3) in two ways: $\{[a_0, a_1], [a_1, a_2], \dots, [a_{n-1}, a_n]\}$ and $\{[b_0, b_1], [b_1, b_2], \dots, [b_{n-1}, b_n]\}$, where $a_0 = b_0 = 0$ and $a_n = b_n = 1$, and such that each a_i and b_i is a power of 3.
- Then, we have a function which linearly maps the i th interval in the first set to the i th interval in the second linearly. It will be differentiable except at the n points $(a_i, b_i)_{1 \leq i \leq n}$.
- This also lets us easily compute the inverse of a function by considering the function which maps the second set of intervals to the first.
- We can use what are called “rooted ternary trees” to represent ways of chopping up intervals

Rooted Ternary Trees

Definition

A rooted ternary tree is a tree with each vertex having valence either 1, 3, or 4, and with only one vertex, called the “root,” having valence 3. Here is an example:



Using Tree Diagrams To Represent Elements of F_3

We can use a rooted ternary tree to represent a way of chopping the unit interval into ternary intervals, as discussed previously.

- The three edges coming off the root each represent an interval of length $\frac{1}{3}$. The first is $[0, \frac{1}{3}]$, the second is $[\frac{1}{3}, \frac{2}{3}]$, and the third is $[\frac{2}{3}, 1]$. Whenever one of those edges hits a splitting point, the interval that edge represents is split into three intervals, each of length $\frac{1}{3}$ the interval being split, as with the first split at the root.

Using Tree Diagrams To Represent Elements of F_3

We can use a rooted ternary tree to represent a way of chopping the unit interval into ternary intervals, as discussed previously.

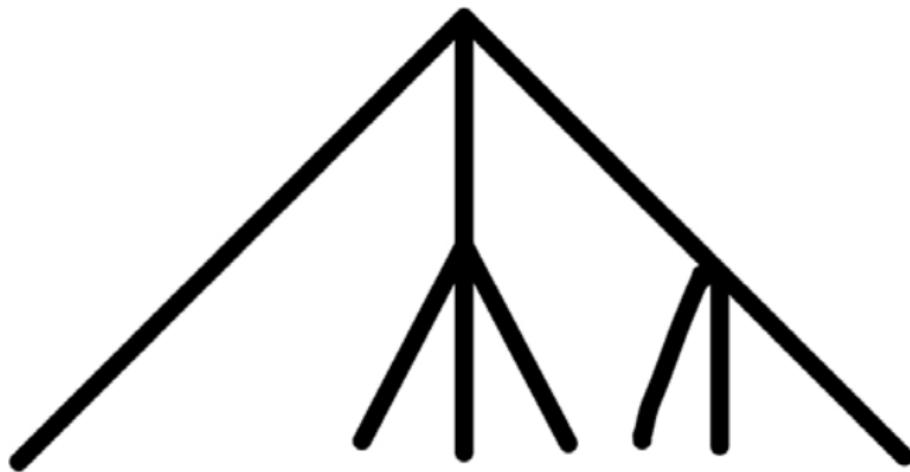
- The three edges coming off the root each represent an interval of length $\frac{1}{3}$. The first is $[0, \frac{1}{3}]$, the second is $[\frac{1}{3}, \frac{2}{3}]$, and the third is $[\frac{2}{3}, 1]$. Whenever one of those edges hits a splitting point, the interval that edge represents is split into three intervals, each of length $\frac{1}{3}$ the interval being split, as with the first split at the root.
- So, every element of F_3 can be represented as a pair of rooted ternary trees, one for each set of intervals which define that element.

Using Tree Diagrams To Represent Elements of F_3

We can use a rooted ternary tree to represent a way of chopping the unit interval into ternary intervals, as discussed previously.

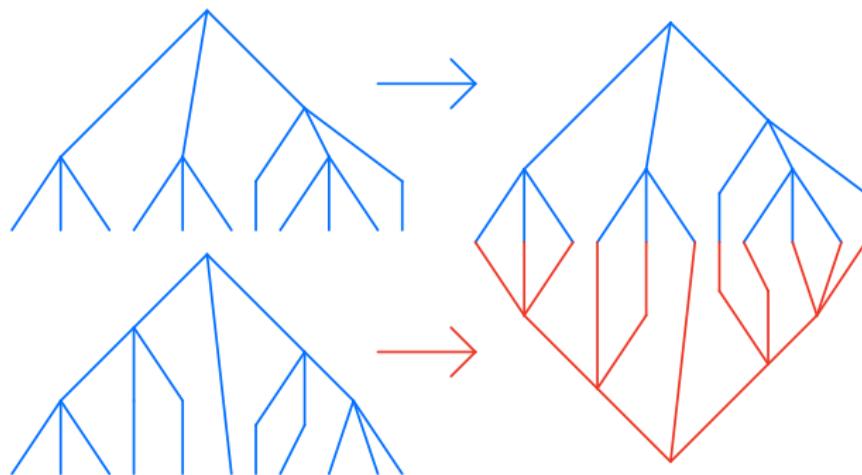
- The three edges coming off the root each represent an interval of length $\frac{1}{3}$. The first is $[0, \frac{1}{3}]$, the second is $[\frac{1}{3}, \frac{2}{3}]$, and the third is $[\frac{2}{3}, 1]$. Whenever one of those edges hits a splitting point, the interval that edge represents is split into three intervals, each of length $\frac{1}{3}$ the interval being split, as with the first split at the root.
- So, every element of F_3 can be represented as a pair of rooted ternary trees, one for each set of intervals which define that element.
- Finally, given two such trees, we can unify them into a single diagram by flipping the second along the x -axis, and sticking it to the bottom of the other

Chopped Intervals



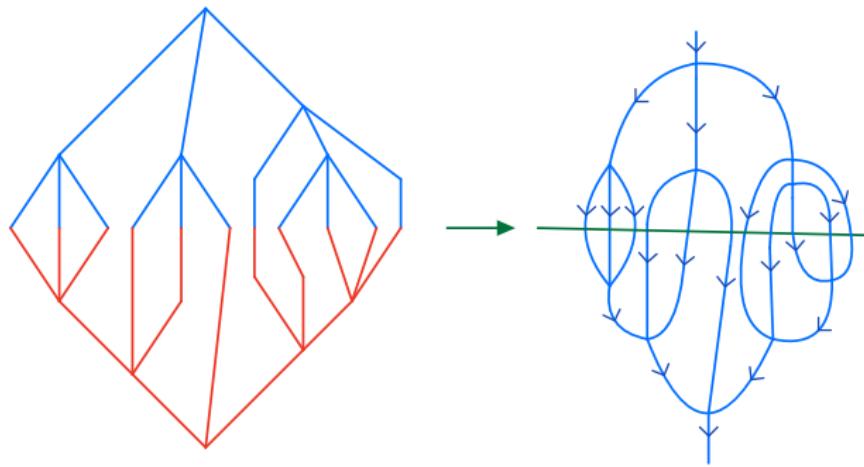
This represents a partition of $[0, 1]$ into
 $\{[0, \frac{1}{3}], [\frac{1}{3}, \frac{4}{9}], [\frac{4}{9}, \frac{5}{9}], [\frac{5}{9}, \frac{2}{3}], [\frac{2}{3}, \frac{7}{9}], [\frac{7}{9}, \frac{8}{9}], [\frac{8}{9}, 1]\}$

Tree Diagram Example



Strand Diagrams

By imposing a downward orientation on these tree diagrams, we obtain what is called a “strand diagram.”



Strand Diagrams

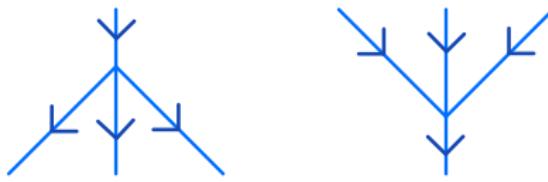
Definition

A “strand diagram” is a directed, acyclic graph in the unit square, satisfying the following two properties:

- There exists a univalent source along the top of the square, and a univalent sink along the bottom
- Every other vertex lies in the interior of the square, and is either a *split* or a *merge*

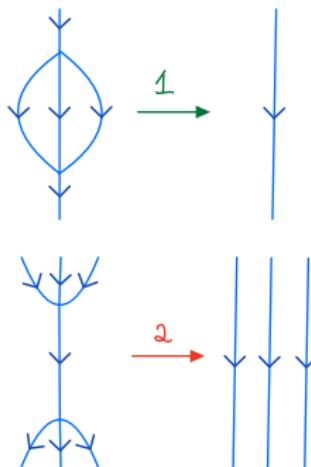
These were originally introduced by Belk and Matucci in 2008 to study the conjugacy problem in the classic Thompson’s Group (which is defined very similarly to F_3), and we have adapted their work to F_3 .

Splits & Merges

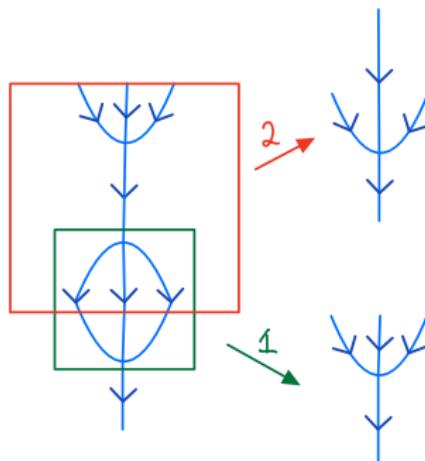


Reductions

Each strand diagram is subject to the following two “reductions”



Reduction 1 (top) and reduction 2 (bottom)

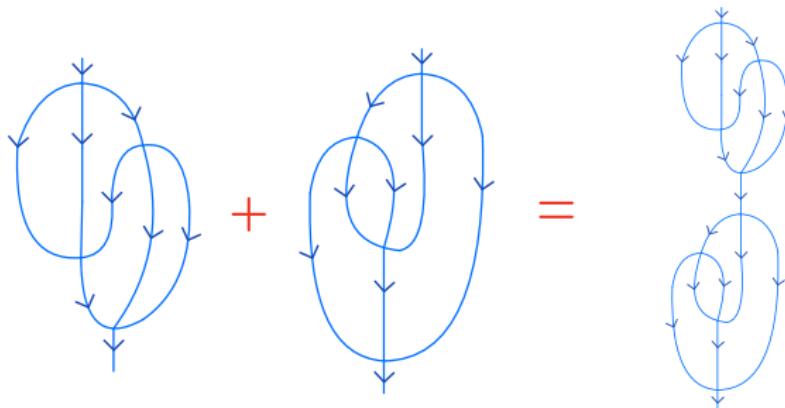


We can see that when the two reductions share a vertex, we can apply either reduction and we get the same thing

Because of this fact, we have that every strand diagram reduces to a unique “reduced” strand diagram (as in, for each strand diagram, we may talk about its “reduced form,” and it is well defined)

Composition

We can “compose” two strand diagrams f, g into a single diagram, $f \circ g$



f, g , and $f \circ g$

Important Theorem

The following is a very good theorem

Theorem

The set of reduced strand diagrams forms a group, with the group operation sending (f, g) to the reduced form of $f \circ g$. Furthermore, this group is isomorphic to F_3 !

Annular Strand Diagrams

- After this, we can define what are called “annular strand diagrams”

Annular Strand Diagrams

- After this, we can define what are called “annular strand diagrams”
- These are basically the same, except they live in the annulus V instead of the unit square

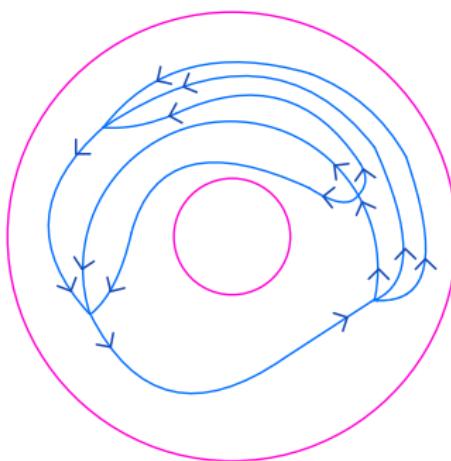
Annular Strand Diagrams

- After this, we can define what are called “annular strand diagrams”
- These are basically the same, except they live in the annulus V instead of the unit square
- These are again similar to objects introduced by Belk and Matucci to study the conjugacy problem in the classical Thompson Group

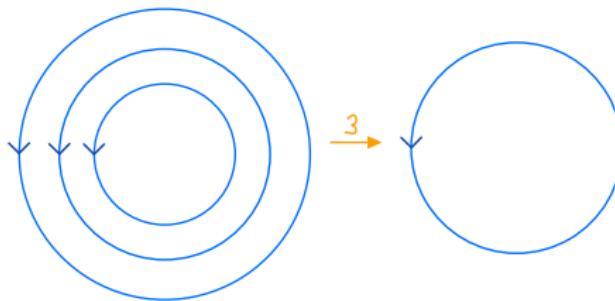
Annular Strand Diagrams

- After this, we can define what are called “annular strand diagrams”
- These are basically the same, except they live in the annulus V instead of the unit square
- These are again similar to objects introduced by Belk and Matucci to study the conjugacy problem in the classical Thompson Group
- We modify the third reduction found by Belk and Matucci and obtain a third reduction for these annular strand diagrams

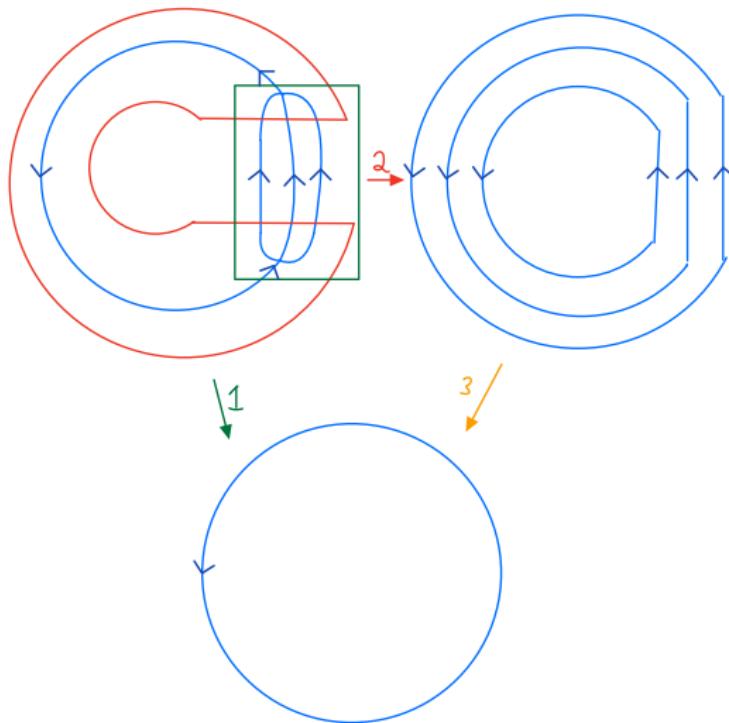
Annular Strand Diagram



The Third Reduction



The third reduction takes three concentric circles which do not interact and turns them into one circle.



The Result

Theorem

Two elements of F_3 are conjugate if and only if they correspond to the same reduced annular strand diagram.

The End

The End

Sources

- “Dynamics in Thompson’s Group F” by Belk and Matucci
<https://core.ac.uk/download/pdf/13283033.pdf>
- “ALGORITHMS AND CLASSIFICATION IN GROUPS OF PIECEWISE-LINEAR HOMEOMORPHISMS” by Matucci
<https://arxiv.org/pdf/0807.2871.pdf>
- “CONJUGACY IN THOMPSON’S GROUPS” by Belk and Matucci
<https://core.ac.uk/download/pdf/13283032.pdf>
- “CONJUGACY AND DYNAMICS IN THOMPSON’S GROUPS” by Belk and Matucci <https://arxiv.org/pdf/0708.4250.pdf>
- “On the construction of knots and links from Thompson’s Groups” by Vaughan Jones, <https://arxiv.org/abs/1810.06034>