Virtual crossings

Reidemeister moves

The Kauffman bracket and the Jones polynomial [Ka1]

Let L be a link diagram.

$$
\text { A-splitting: } \frac{\mid}{\mid} \leftrightarrow \leftrightarrow<
$$

A state S is a choice of either A - or B-splitting at every classical crossing.

$$
\begin{aligned}
& \alpha(S)=\#(\text { of } A \text {-splittings in } S) \\
& \beta(S)=\#(\text { of } B \text {-splittings in } S) \\
& \delta(S)=\#(\text { of circles in } S) \\
& {[L](A, B, d):=\sum_{S} A^{\alpha(S)} B^{\beta(S)} d^{\delta(S)-1}} \\
& J_{L}(t):=(-1)^{w(L)} t^{3 w(L) / 4}[L]\left(t^{-1 / 4}, t^{1 / 4},-t^{1 / 2}-t^{-1 / 2}\right)
\end{aligned}
$$

Example

($, \beta, \delta)$

$$
[L]=A^{3}+3 A^{2} B d+2 A B^{2}+A B^{2} d^{2}+B^{3} d ; \quad J_{L}(t)=1
$$

Thistlethwaite's Theorem [Ka1] Up to a sign and multiplication by a power of the Jones polynomial $J_{L}(t)$ of an alternating link L is equal to the Tutte polynomial $T_{\Gamma}\left(-t,-t^{-1}\right)$.

References

[Ka1] L. H. Kauffman, New invariants in knot theory, Amer. Math. Monthly 95 (1988) 195-242. [Ka2] L. Kauffman, Virtual knot theory, European Journal of Combinatorics, 20 (1999) 663-690.

