
Ribbon graphs

Definition. A ribbon graph G is a surface (possibly non-orientable) with boundary, represented
as the union of two sets of closed topological discs called vertices V (G) and edges E(G), satisfying
the following conditions:

• these vertices and edges intersect by disjoint line segments;
• each such line segment lies on the boundary of precisely one vertex and precisely one edge;
• every edge contains exactly two such line segments.
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The Bollobás-Riordan polynomial

Reference: B. Bollobás and O. Riordan [BR].

RG({xe, ye}, X, Y, Z) :=
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Xr(G)−r(F )Y n(F )Zk(F )−bc(F )+n(F )

For signed graphs, we set

{

x+ = 1, x− = (X/Y )1/2,
y+ = 1, y− = (Y/X)1/2.

Example.
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RG(X,Y, Z) = X + 2 + Y +XY Z2 + 2Y Z + Y 2Z

Properties.

RG = xeRG/e + yeRG−e if e is ordinary, that is neither a bridge nor a loop,
RG = (xe +Xye)RG/e if e is a bridge.
RG1⊔G2

= RG1·G2
= RG1

·RG2



Thistlethwaite’s Theorem [Ka1] Up to a sign and multiplication by a power of t the Jones

polynomial JL(t) of an alternating link L is equal to the Tutte polynomial TΓ(−t,−t−1).

The theorem was generalized to non-alternating links using signed graphs in [Ka2] and using the
Bollobás-Riordan polynomial for ribbon graphs in [DFKLS]; and to virtual links in [ChVo, Ch].

Theorem [Ch].

Let L be a virtual link diagram with e classical crossings, Gs
L be the signed ribbon graph corre-

sponding to a state s, and v := v(Gs
L), k := k(Gs

L). Then e = e(Gs
L) and

[L](A,B, d) = Ae
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Construction of a ribbon graph from a virtual link diagram
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Attaching planar bands
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Replacing bands by arrows
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Untwisting state circles
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Pulling state circles apart
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Forming the ribbon graph Gs
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