
Symmetric functions. [Eg]

Definition. A symmetric function on n (may be infinitely many) variables x1, . . . , xn is a func-
tion that is unchanged by any permutation of its variables. If π is a permutation of {1, 2, . . . , n},
then for a symmetric function f(x1, . . . , xn) we have f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)) So it is
invariant under the action of the symmetric group Sn acting on the indices of variables.

The symmetric functions form a vector space R[x1, . . . , xn]
Sn . Moreover, they form an algebra

(a vector space with an operation of multiplication of vectors).

Elementary symmetric functions.

e0 := 1;
e1 := x1 + x2 + · · ·+ xn;
e2 := (x1x2 + x1x3 + · · ·+ x1xn) + (x2x3 + · · ·+ x2xn) + · · ·+ xn−1xn;
e3 := x1x2x3 + . . . · · ·+ xn−2xn−1xn;

...
en := x1x2 . . . xn−1xn.

In general ek :=
∑

1≤j1<j2...jk≤n

xj1 . . . xjk .

Vieta’s formulas: the elementary symmetric polynomials in x1, . . . , xn are coefficients (up
to the sign) of a polynomial p(x) with roots x1, . . . , xn:

p(x) = xn − e1x
n−1 + e2x

n−2 − · · · ± en−1x∓ en = (x− x1)(x− x2) . . . (x− xn).

Fundamental theorem of symmetric polynomials.

Any symmetric polynomial p(x1, . . . , xn) can be uniquely(!!!) represented as a polynomial in the
elementary symmetric functions: p(x1, . . . , xn) = q(e1, . . . , en) for an appropriate polynomial
q(y1, . . . , yn).

In other words, the algebra of symmetric polynomials R[x1, . . . , xn]
Sn is isomorphic to the

algebra of polynomials R[y1, . . . , yn]. Thus, the elementary symmetric polynomials e1, . . . , en
constitute the generating set for the algebra R[x1, . . . , xn]

Sn . As a vector space, it has a basis
(linear, or additive) consisting of all monomials in e1, . . . , en.

Symmetric power functions

pk(x1, . . . , xn) := xk
1 + xk

2 + · · ·+ xk
n

also form a generating set for R[x1, . . . , xn]
Sn .

Newton’s identities.

kek =

k∑

i=1

(−1)i−1ek−ipi.

In particular, 2e2 = e1p1 − e0p2 = e21 − p2 because p1 = e1 and e0 = 1. So, p2 = e21 − 2e2.

Stanley’s chromatic symmetric function. [St1]

XG(x1, x2, . . . ) :=
∑

κ:V (G)→N

proper

∏

v∈V (G)

xκ(v)

For example, χG(q) = XG(1, 1, . . . , 1︸ ︷︷ ︸
q

, 0, 0, 0, . . . ).



Example.

X = x̂1x1 + x1x2 + x1x3 + . . .

x2x1 + x̂2x2 + x2x3 + . . .

x3x1 + x3x2 + x̂3x3 + . . .
...

...
. . .

= p21 − p2 = e21 − (e21 − 2e2) = 2e2, where pm :=

∞∑

i=1

xm
i is the power function basis

for the space of symmetric functions. In general, XKk
= k!ek.

Symmetric Stanley’s acyclicity theorem deals with the expression of XG in terms of elementary
symmetric functions.

Theorem. [St1, Theorem 3.3] Let XG =
∑

cl1,l2,...,lsel1el2 . . . els be the expression of XG in
terms of elementary symmetric functions. (Note that l1+ l2+ · · ·+ ls = # of vertices of G.) Then
for every s,

∑
cl1,l2,...,ls = # of acyclic orientations of G with exactly s sinks.

For example, the graph G = has 2 acyclic orientations with exactly one sink and
, because X = 2e2.

Chromatic polynomial of signed graphs.

There are two chromatic polynomials of signed graphs [Za].
A q-coloring of a signed Γ is a map κ : V (Γ) → {−q,−q + 1, . . . ,−1, 0, 1, . . . , q − 1, q}. A

q-coloring κ is proper if for any edge e with the sign εe: κ(v1) 6= εκ(v2), where v1 and v2 are the
endpoints of e.

Definition.

χΓ(2q + 1) := # of proper q-colorings of Γ.

χ
6=0
Γ (2q) := # of proper q-colorings of Γ which take nonzero values.

Properties.

• χΓ(l) is a polynomial function of l = 2q + 1 > 0 ;

• χ
6=0
Γ (l) is a polynomial function of l = 2q > 0 ;

• χΓ(l) = χΓ−e(l)− χΓ/e(l) ;

• χ
6=0
Γ (l) = χ

6=0
Γ−e(l)− χ

6=0
Γ/e(l) ;

• χΓ1⊔Γ2
= χΓ1

· χΓ2
and χ

6=0
Γ1⊔Γ2

= χ
6=0
Γ1

· χ 6=0
Γ2

for a disjoint union Γ1 ⊔ Γ2 ;
• χ∅ = 1 .

Example. χ 6=0

−
− −

(2q) = 2q(2q − 1).

There are two tricky issues in Zaslavky’s acyclicity theorem. The first one is the notion of a
cycle. A subset S of edges of a sign graphs is called balanced if for every circuit in S the product
of the signs of edges of the circuit is equal to 1. A cycle of a signed graph G is a subgraph of one

the following 3 types: 1) a balanced circuit, 2) a subdivision of a tight handcuff with both

circuits to be unbalanced, and 3) a subdivision of a loose handcuff with both circuits

to be unbalanced. The second issue is a notion of orientation. An orientation of an edge is a pair
of arrows on its half-edges which are coherent for positive edges and not coherent for negative
edges. An orientation of a sign graph is acyclic if every cycle contains either a source or a sink.
An orientation of a sign graph is compatible with a coloring c if for every positive edge the color
of it arrow-head is greater or equal to the color of it arrow-tail and for every negative edge the



sum of colors of its ends is not negative (resp. not positive) for the arrows pointed towards the
ends (resp. away from the end).

Theorem. [Za, Theorem 3.5] Let q ∈ N and G be a signed graph with n vertices. The
the number of compatible pairs of acyclic orientations of G and colorings V (G) → {−q,−q +

1, . . . ,−1, 1, . . . , q − 1, q} is equal to (−1)nχ 6=0
G (−2q).

Example. For q = 1 and the graph above we have χ 6=0

−
− −

(−2) = 6. Here are 6 compatible

pairs of acyclic orientations and colorings V (G) → {−1, 1} (we mark the source-vertex red and
the sink-vertex blue).

1 1 −1 −1 1 −1 −1 1 1 −1 −1 1

Note that the first two colorings are proper and the last four are improper.

C-symmetric chromatic function of signed graphs. [Ra, Ch]

YG(. . . , x−2, x−1, x1, x2, . . . ...) :=
∑

κ:V (G)→Z\{0}
proper

∏

v∈V (G)

xκ(v)

Example. Y
−

− −

= . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x−2(. . . x−2 + x−1 + x1 + x̂2 + . . . )
x−1(. . . x−2 + x−1 + x̂1 + x2 + . . . )
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= p21,0 − p1,1, where

pa,b :=
∑

i∈Z\{0}

xa
i x

b
−i are the signed power functions.

The signed chromatic polynomial χ 6=0
G (2q) is a specialization of YG obtained by substitution

xi = 1 for |i| ≤ q and xi = 0 for |i| ≥ q. This is the same substitution as pa,b = l = 2q.
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