$\frac{\text { Matroids }}{A \text { matroid is a pair } M=(E, \mathcal{B}) \text { consisting }}$ of a finite set E and a nonempty collection \mathcal{B} of its subsets, called bases, satisfying the axioms:
(B1) No proper subset of a base is a base.
(B2) $=\left(\right.$ Exchange axion) If B_{1} and B_{2} are bases and $b_{1} \in B_{1}-B_{2}$, then there is an element $b_{2} \in B_{2}-$ B_{1} such that $\left(B_{1}-b_{1}\right) \cup b_{2}$ is a base.
Δ-matroids

A Δ-matroid is a pair $M=(E, \mathcal{F})$ consisting of a finite set E and a nonempty collection \mathcal{F} of its subsets, called feasible sets, satisfying the

Symmetric Exchange axion

If F_{1} and F_{2} are two feasible sets and $f_{1} \in F_{1} \Delta F_{2}$, then there is an element $f_{2} \in F_{1} \Delta F_{2}$ such that $F_{1} \Delta\left\{f_{1}, f_{2}\right\}$ is a feasible set.

Ribbon graphs (graphs on surfaces)

Definition. A ribbon graph G is a surface (possibly non-orientable) with boundary, represented as the union of two sets of closed topological discs called vertices $V(G)$ and edges $E(G)$, satisfying the following conditions:

- these vertices and edges intersect by disjoint line segments;
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two such line segments.

Definition. A quasi-tree is ribbon graph G with a single boundary component, $b c(G)=1$.

Examples.

Spanning quasi-trees: $\{a\},\{b\},\{a, b, c\}$
(ii)

Spanning quasi-trees:
$\emptyset,\{a, b\}$
(iii)

Spanning quasi-trees:
$\{b\},\{c\},\{a, b\},\{a, c\},\{a, b, c\}$

Theorem. Let $G=(V, E)$ be a ribbon graph. Then $D(G):=(E,\{$ spanning quasi-trees $\})$ is a Δ-matroid.

Minors in Δ-matroids

Let $D=(E, \mathcal{F})$ be a Δ-matroid and $e \in E$.
e is a loop iff $\forall F \in \mathcal{F}, e \notin F . \quad e$ is a coloop iff $\forall F \in \mathcal{F}, e \in F$.
If e is not a loop, $D / e:=(E \backslash\{e\},\{F \backslash\{e\} \mid F \in \mathcal{F}, e \in F\})$.
If e is not a coloop, $D \backslash e:=(E \backslash\{e\},\{F \mid F \in \mathcal{F}, F \subset E \backslash\{e\}\})$.
Twists of Δ-matroids. Let $D=(E, \mathcal{F})$ be a Δ-matroids and $A \subset E$.

$$
D * A:=(E,\{F \Delta A \mid F \in \mathcal{F}\})
$$

Dual Δ-matroid: $D^{*}:=D * E$.

Matroids associated with a Δ-matroid

Let $D=(E, \mathcal{F})$ be a Δ-matroid.
$D_{\text {min }}:=\left(E, \mathcal{F}_{\text {min }}\right)$, where $\mathcal{F}_{\text {min }}:=\{F \in \mathcal{F} \mid F$ is of minimal possible cardinality $\}$.
$D_{\max }:=\left(E, \mathcal{F}_{\max }\right)$, where $\mathcal{F}_{\max }:=\{F \in \mathcal{F} \mid F$ is of maximal possible cardinality $\}$.
Facts.

- $D_{\min }$ and $D_{\max }$ are usual matroids. Width $w(D):=r\left(D_{\max }\right)-r\left(D_{\min }\right)$.
- $(D(G))_{\min }=\mathcal{C}(G) . \quad(D(G))_{\max }=\left(\mathcal{C}\left(G^{*}\right)\right)^{*}$.
- $D(G)=\mathcal{C}(G)$ iff G is a planar ribbon graph.

The twist polynomial of a delta-matroid $D=(E, \mathcal{F})$
is the generating function for the width of all twists of D,

$$
{ }^{\partial} w_{D}(z):=\sum_{A \subseteq E} z^{w(D * A)}
$$

References
[Bouchet] A. Bouchet, Greedy algorithm and symmetric matroids, Math. Program. 38 (1987) 147-159.

