Matroids	Δ -matroids
 A matroid is a pair M = (E, B) consisting of a finite set E and a nonempty collection B of its subsets, called bases, satisfying the axioms: (B1) No proper subset of a base is a base. (B2) =(Exchange axion) If B₁ and B₂ are bases and b₁ ∈ B₁ - B₂, then there is an element b₂ ∈ B₂ - B₁ such that (B₁ - b₁) ∪ b₂ is a base. 	A Δ -matroid is a pair $M = (E, \mathcal{F})$ con- sisting of a finite set E and a nonempty collection \mathcal{F} of its subsets, called <i>feasible</i> sets, satisfying the Symmetric Exchange axion If F_1 and F_2 are two feasible sets and $f_1 \in F_1 \Delta F_2$, then there is an element $f_2 \in F_1 \Delta F_2$ such that $F_1 \Delta \{f_1, f_2\}$ is a feasible set.

Δ -matroids [Bouchet]

Ribbon graphs (graphs on surfaces)

Definition. A ribbon graph G is a surface (possibly non-orientable) with boundary, represented as the union of two sets of closed topological discs called vertices V(G) and edges E(G), satisfying the following conditions:

- these vertices and edges intersect by disjoint line segments;
- each such line segment lies on the boundary of precisely one vertex and precisely one edge;
- every edge contains exactly two such line segments.

Definition. A quasi-tree is ribbon graph G with a single boundary component, bc(G) = 1.

Examples.

Theorem. Let G = (V, E) be a ribbon graph. Then $D(G) := (E, \{spanning quasi-trees\})$ is a Δ -matroid.

<u>Minors in Δ -matroids</u>

Let $D = (E, \mathcal{F})$ be a Δ -matroid and $e \in E$. e is a loop iff $\forall F \in \mathcal{F}, e \notin F$. If e is not a loop, $D/e := (E \setminus \{e\}, \{F \setminus \{e\} | F \in \mathcal{F}, e \in F\})$. If e is not a coloop, $D \setminus e := (E \setminus \{e\}, \{F | F \in \mathcal{F}, F \subset E \setminus \{e\}\})$.

Twists of Δ **-matroids.** Let $D = (E, \mathcal{F})$ be a Δ -matroids and $A \subset E$.

 $D * A := (E, \{F\Delta A | F \in \mathcal{F}\}).$

Dual Δ -matroid: $D^* := D * E$.

Let $D = (E, \mathcal{F})$ be a Δ -matroid.

 $D_{min} := (E, \mathcal{F}_{min})$, where $\mathcal{F}_{min} := \{F \in \mathcal{F} | F \text{ is of minimal possible cardinality}\}$. $D_{max} := (E, \mathcal{F}_{max})$, where $\mathcal{F}_{max} := \{F \in \mathcal{F} | F \text{ is of maximal possible cardinality}\}$. Facts.

- D_{min} and D_{max} are usual matroids. Width $w(D) := r(D_{max}) r(D_{min})$.
- $(D(G))_{min} = \mathcal{C}(G).$ $(D(G))_{max} = (\mathcal{C}(G^*))^*.$
- $D(G) = \mathcal{C}(G)$ iff G is a planar ribbon graph.

The twist polynomial of a delta-matroid $D = (E, \mathcal{F})$

is the generating function for the width of all twists of D,

$${}^{\partial}w_D(z) := \sum_{A \subseteq E} z^{w(D*A)}$$

References

[Bouchet] A. Bouchet, Greedy algorithm and symmetric matroids, Math. Program. 38 (1987) 147–159.