Optimizing Minimum Generating Sets of Twisted Forbidden Moves

Kabir Belgikar, Calvin Forsee, Wo Wu, OSU.

Mentor: Sergei Chmutov; Main reference: Unknotting twisted knots with Gauss diagram forbidden moves, by Shudan Xue and Qingying Deng

June 27th, 2022.

- Tracing the knot travels counterclockwise around the circle.
- Arrows point from the overcrossing to the undercrossing of the same numbered crossing, marked with its sign.
- Virtual crossings are not indicated on Gauss Diagrams.
- Twists are designated by bars.

Reidemeister Moves 1&2

Reidemeister Move 3

Classical Forbidden Moves

Kabir Belgikar, Calvin Forsee, Wo Wu, OSU OPTIMIZING MINIMUM GENERATING SETS OF TWISTED FORBIDDEN MOVES

Extended Forbidden Moves

• F_s and F_o are derivable from F_1 and F_2

Twisted Reidemeister Moves

 T₁ moves a bar over a virtual knot, and so does not alter Gauss Diagrams

Forbidden Moves with Bars

Reidemeister Moves 1&2 with Bars

- Forbidden moves T_4 and T_5 correspond to R_1 and R_2 with bars
- T_8 represents T_5 with the bar on the overcrossing segment

Reidemeister Move 3 with Bar

- \bullet Forbidden move T_6 and T_7 correspond to R_3 with a bar on different segments
- T_9 represents T_6 with the bar on an overcrossing segment

F_1 and F_2 with Twists

• A similar proof shows F_3 and F_4 to be equivalent

Kabir Belgikar, Calvin Forsee, Wo Wu, OSU

Optimizing Minimum Generating Sets of Twisted Forbidden Moves

Proof of T_5

- T_6 can be derived from F_4 , F_s , and F_1
- F_u moves an arrowhead past an arrowtail of the same sign with bar. It is derived from F₁, T₄, F_s, F₃, and F₄
- F_v moves an arrowhead past an arrowtail of a different sign with bar. It is derived from F_1 , T_4 , F_o , F_3 , and F_4
- T_7 can be derived from F_2 , F_1 , and F_u

Unknotting any Gauss Diagram

- Using the set of forbidden moves previously derived, any arrowhead or arrowtail can be moved past each other as well as past bars.
- All arrows can be removed by R₁ or T₄ and all pairs of bars can be removed by T₂, thus reducing all Gauss diagrams to the unknot or the unknot with a bar.
- This set of moves can be derived from T₄, F_1/F_2 , and F_3/F_4