Graphs and their polynomials

Definition. A graph G is a finite set of vertices $V(G)$ and a finite set $E(G)$ of unordered pairs (x, y) of vertices $x, y \in V(G)$ called edges.
A graph may have loops (x, x) and multiple edges when a pair (x, y) appears in $E(G)$ several times. Pictorially we represent the vertices by points and edges by lines connecting the corresponding points. Topologically a graph is a 1-dimensional cell complex with $V(G)$ as the set of 0 -cells and $E(G)$ as the set of 1-cells. Here are two pictures representing the same graph.

$$
\begin{aligned}
V(G)= & \{a, b, c, d\} \\
E(G)= & \{(a, a),(a, b),(a, c),(a, d), \\
& (b, c),(b, c),(b, d),(c, d),(d, d)\}
\end{aligned}
$$

Chromatic polynomial $\chi_{G}(q)$.

A coloring of G with q colors is a map $\varkappa: V(G) \rightarrow\{1, \ldots, q\}$. A coloring \varkappa is proper if for any edge $e: \varkappa\left(v_{1}\right) \neq \varkappa\left(v_{2}\right)$, where v_{1} and v_{2} are the endpoints of e.

Definition 1. $\chi_{G}(q):=\#$ of proper colorings of G in q colors.

Properties (Definition 2).

$\chi_{G}=\chi_{G-e}-\chi_{G / e}$;
$\chi_{G_{1} \sqcup G_{2}}=\chi_{G_{1}} \cdot \chi_{G_{2}}, \quad$ for a disjoint union $G_{1} \sqcup G_{2}$;
$\chi_{\bullet}=q$.
Tutte polynomial $T_{G}(x, y)$.

Definition 1.

$T_{G}=T_{G-e}+T_{G / e}$
$T_{G}=x T_{G / e}$
if e is neither a bridge nor a loop;
$T_{G}=y T_{G-e}$ fo a bridge
if e is a loop;
$T_{G_{1} \sqcup G_{2}}=T_{G_{1} \cdot G_{2}}=T_{G_{1}} \cdot T_{G_{2}}$
for a disjoint union $G_{1} \sqcup G_{2}$

and a one-point join $G_{1} \cdot G_{2}$;

Properties.

$T_{G}(1,1)$
$T_{G}(2,1)$
$T_{G}(1,2) \quad$ is the number of spanning connected subgraphs of G;
$T_{G}(2,2)=2^{|E(G)|} \quad$ is the number of spanning subgraphs of G;
$\chi_{G}(q)=q^{k(G)}(-1)^{r(G)} T_{G}(1-q, 0)$;

Definition 2. Let F be a graph;

- $v(F)$ be the number of its vertices;
- $e(F)$ be the number of its edges;
- $k(F)$ be the number of connected components of F;
- $r(F):=v(F)-k(F)$ be the rank of F;
- $n(F):=e(F)-r(F)$ be the nullity of F;

$$
T_{G}(x, y):=\sum_{F \subseteq E(G)}(x-1)^{r(G)-r(F)}(y-1)^{n(F)}
$$

Dichromatic polynomial $Z_{G}(q, v)$ (Definition 3).

Let $\operatorname{Col}(G)$ denote the set of colorings of G with q colors.

$$
Z_{G}(q, v):=\sum_{\varkappa \in \operatorname{Col}(G)}(1+v)^{\# \text { edges colored not properly by } \varkappa}
$$

Properties.
$Z_{G}=Z_{G-e}+v Z_{G / e} ; \quad Z_{G_{1} \sqcup G_{2}}=Z_{G_{1}} \cdot Z_{G_{2}}$ for a disjoint union $G_{1} \sqcup G_{2} ; \quad Z \bullet=q ;$
$Z_{G}(q, v)=\sum_{F \subseteq E(G)} q^{k(F)} v^{e(F)} ; \quad \chi_{G}(q)=Z_{G}(q,-1) ;$
$Z_{G}(q, v)=q^{k(G)} v^{r(G)} T_{G}\left(1+q v^{-1}, 1+v\right) ; \quad T_{G}(x, y)=(x-1)^{-k(G)}(y-1)^{-v(G)} Z_{G}((x-1)(y-1), y-1)$.

Potts model in statistical mechanics (Definition 4).

Potts model (C.Domb 1952); $\quad q=2$ the Using model (W.Lenz, 1920)
Let G be a graph.
Particles are located at vertices of G. Each particle has a spin, which takes q different values. A state, $\sigma \in \mathcal{S}$, is an assignment of spins to all vertices of G. Neighboring particles interact with each other only if their spins are the same.

The energy of the interaction along an edge e is $-J_{e}$ (coupling constant). The model is called ferromagnetic if $J_{e}>0$ and antiferromagnetic if $J_{e}<0$.

Energy of a state σ (Hamiltonian),

$$
H(\sigma)=-\sum_{(a, b)=e \in E(G)} J_{e} \delta(\sigma(a), \sigma(b)) .
$$

Boltzmann weight of σ :

$$
\begin{aligned}
& \text { n weight of } \sigma \text { : } \\
& e^{-\beta H(\sigma)}=\prod_{(a, b)=e \in E(G)} e^{J_{e} \beta \delta(\sigma(a), \sigma(b))}=\prod_{(a, b)=e \in E(G)}\left(1+\left(e^{J_{e} \beta}-1\right) \delta(\sigma(a), \sigma(b))\right),
\end{aligned}
$$

where the inverse temperature $\beta=\frac{1}{\kappa T}, T$ is the temperature, $\kappa=1.38 \times 10^{-23}$ joules/Kelvin is the Boltzmann constant.

The Potts partition function (for $x_{e}:=e^{J_{e} \beta}-1$)

$$
Z_{G}\left(q, x_{e}\right):=\sum_{\sigma \in \mathcal{S}} e^{-\beta H(\sigma)}=\sum_{\sigma \in \mathcal{S}} \prod_{e \in E(G)}\left(1+x_{e} \delta(\sigma(a), \sigma(b))\right)
$$

Properties of the Potts model Probability of a state $\sigma: \quad P(\sigma):=e^{-\beta H(\sigma)} / Z_{G}$.
Expected value of a function $f(\sigma)$:

$$
\langle f\rangle:=\sum_{\sigma} f(\sigma) P(\sigma)=\sum_{\sigma} f(\sigma) e^{-\beta H(\sigma)} / Z_{G}
$$

Expected energy: $\langle H\rangle=\sum_{\sigma} H(\sigma) e^{-\beta H(\sigma)} / Z_{G}=-\frac{d}{d \beta} \ln Z_{G}$.
Fortuin-Kasteleyn'1972: $\quad Z_{G}\left(q, x_{e}\right)=\sum_{F \subseteq E(G)} q^{k(F)} \prod_{e \in F} x_{e}$,
where $k(F)$ is the number of connected components of the spanning subgraph F.
$Z_{G}=Z_{G \backslash e}+x_{e} Z_{G / e}$.

